Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-08-12 DOI:10.2166/wst.2024.277
N Senthilkumar, M Yuvaperiyasamy, B Deepanraj, K Sabari
{"title":"Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still.","authors":"N Senthilkumar, M Yuvaperiyasamy, B Deepanraj, K Sabari","doi":"10.2166/wst.2024.277","DOIUrl":null,"url":null,"abstract":"<p><p>The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m<sup>2</sup>, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (<i>P</i>), glass temperature (<i>T</i><sub>g</sub>), and basin water temperature (<i>T</i><sub>w</sub>). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS<b>.</b></p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.277","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS.

基于模糊逻辑的预测和利用粒子群优化技术进行参数优化,以提高金字塔型太阳能蒸发器的性能。
本研究的主要目的是开发一个稳健的模型,利用模糊逻辑界面(FL)和粒子群优化(PSO)来预测金字塔太阳能蒸发器(PSS)的最佳参数。该模型考虑了一系列环境变量以及作为相变材料(PCM)的银纳米粒子(Ag)与石蜡的不同混合水平。研究重点关注三个关键因素:太阳强度(350 至 950 瓦/平方米)、水深(4 至 8 厘米)和纳米银(Ag)浓度(0.5 至 1.5%),相应的输出响应为生产率(P)、玻璃温度(Tg)和池水温度(Tw)。实验设计基于田口 L9 正交阵列。利用与理想解相似的偏好排序技术(TOPSIS)来优化 PSS 的工艺参数。采用模糊推理系统 (FIS) 的目的是最大限度地减少系统内的不确定性,并采用粒子群优化算法对最佳设置进行微调。这些方法可用于预测提高 PSS 生产率所需的最佳条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信