Full-scale study on high-rate low-temperature anaerobic digestion of agro-food wastewater: process performances and microbial community.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-08-06 DOI:10.2166/wst.2024.272
Lara M Paulo, Yu-Chen Liu, Juan Castilla-Archilla, Javier Ramiro-Garcia, Dermot Hughes, Thérèse Mahony, B Conall Holohan, Paul Wilmes, Vincent O'Flaherty
{"title":"Full-scale study on high-rate low-temperature anaerobic digestion of agro-food wastewater: process performances and microbial community.","authors":"Lara M Paulo, Yu-Chen Liu, Juan Castilla-Archilla, Javier Ramiro-Garcia, Dermot Hughes, Thérèse Mahony, B Conall Holohan, Paul Wilmes, Vincent O'Flaherty","doi":"10.2166/wst.2024.272","DOIUrl":null,"url":null,"abstract":"<p><p>The fast-growing global population has led to a substantial increase in food production, which generates large volumes of wastewater during the process. Despite most industrial wastewater being discharged at lower ambient temperatures (<20 °C), majority of the high-rate anaerobic reactors are operated at mesophilic temperatures (>30 °C). High-rate low-temperature anaerobic digestion (LtAD) has proven successful in treating industrial wastewater both at laboratory and pilot scales, boasting efficient organic removal and biogas production. In this study, we demonstrated the feasibility of two full-scale high-rate LtAD bioreactors treating meat processing and dairy wastewater, and the microbial communities in both reactors were examined. Both reactors exhibited rapid start-up, achieving considerable chemical oxygen demand (COD) removal efficiencies (total COD removal >80%) and generating high-quality biogas (CH<sub>4</sub>% in biogas >75%). Long-term operations (6-12 months) underscored the robustness of LtAD bioreactors even during winter periods (average temperature <12 °C), as evidenced by sustained high COD removal rates (total COD removal >80%). The stable performance was underpinned by a resilient microbial community comprising active acetoclastic methanogens, hydrolytic, and fermentative bacteria. These findings underscore the feasibility of high-rate low-temperature anaerobic wastewater treatment, offering promising solutions to the zero-emission wastewater treatment challenge.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 4","pages":"1239-1249"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.272","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fast-growing global population has led to a substantial increase in food production, which generates large volumes of wastewater during the process. Despite most industrial wastewater being discharged at lower ambient temperatures (<20 °C), majority of the high-rate anaerobic reactors are operated at mesophilic temperatures (>30 °C). High-rate low-temperature anaerobic digestion (LtAD) has proven successful in treating industrial wastewater both at laboratory and pilot scales, boasting efficient organic removal and biogas production. In this study, we demonstrated the feasibility of two full-scale high-rate LtAD bioreactors treating meat processing and dairy wastewater, and the microbial communities in both reactors were examined. Both reactors exhibited rapid start-up, achieving considerable chemical oxygen demand (COD) removal efficiencies (total COD removal >80%) and generating high-quality biogas (CH4% in biogas >75%). Long-term operations (6-12 months) underscored the robustness of LtAD bioreactors even during winter periods (average temperature <12 °C), as evidenced by sustained high COD removal rates (total COD removal >80%). The stable performance was underpinned by a resilient microbial community comprising active acetoclastic methanogens, hydrolytic, and fermentative bacteria. These findings underscore the feasibility of high-rate low-temperature anaerobic wastewater treatment, offering promising solutions to the zero-emission wastewater treatment challenge.

农业食品废水高速低温厌氧消化全规模研究:工艺性能和微生物群落。
全球人口的快速增长导致粮食产量大幅增加,在此过程中会产生大量废水。尽管大多数工业废水在较低的环境温度(30 °C)下排放。在实验室和中试规模上,高速低温厌氧消化(LtAD)已被证明能成功处理工业废水,并能高效去除有机物和产生沼气。在本研究中,我们展示了两个处理肉类加工和乳制品废水的全规模高速率 LtAD 生物反应器的可行性,并对两个反应器中的微生物群落进行了研究。两个反应器都能快速启动,达到相当高的化学需氧量(COD)去除率(总 COD 去除率大于 80%),并产生高质量的沼气(沼气中的 CH4% >75%)。即使在冬季(平均气温 80%),LtAD 生物反应器也能长期运行(6-12 个月)。稳定的性能得益于由活跃的噬乙酰甲烷菌、水解菌和发酵菌组成的微生物群落。这些发现强调了高速率低温厌氧废水处理的可行性,为零排放废水处理挑战提供了前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信