Shuichu Hao , Cong Yao , Peilin Meng , Yumen Jia , li Liu , Chun Zhang
{"title":"Effects of T-2 and deoxynivalenol mycotoxins on mouse spinal bone growth and integrity","authors":"Shuichu Hao , Cong Yao , Peilin Meng , Yumen Jia , li Liu , Chun Zhang","doi":"10.1016/j.toxicon.2024.108079","DOIUrl":null,"url":null,"abstract":"<div><p>Kashin-Beck Disease (KBD), an osteoarticular disorder, is influenced by various factors, including exposure to Deoxynivalenol (DON) and T-2 mycotoxins. This study systematically explored the impact of these mycotoxins on the development and structural resilience of spinal structures in mice, examining both isolated and combined effects. The experiment involved 72 male mice divided into nine groups, each subjected to varying concentrations of T-2, DON, or their combinations over four weeks. Rigorous monitoring included body weight, key indicators of bone metabolism, and cellular activities essential to bone health. Comprehensive evaluations using biomechanical analysis, x-ray, and micro-computed tomography (micro-CT) were conducted to assess alterations in spinal structure.</p><p>The findings revealed a pivotal aspect: mice exhibited a dose-dependent decline in body weight when exposed to individual mycotoxins, while simultaneous exposure produced an unanticipated antagonistic effect. Moreover, decreases were noted in levels of calcium, phosphorus, and vitamin D, coupled with changes in the activities of osteoblasts (increased) and osteoclasts (decreased), all intricately tied to the toxins' dosages and combinations. Notably, variations in the biomechanical properties corresponded with the mycotoxin dosage and blend, showing a decline in biomechanical strength. Micro-CT analyses further substantiated the profound toxic impact of the toxin dosage and mixtures on both the cortical and trabecular components of the spinal structures.</p><p>In summary, this investigation unequivocally illuminates the dose- and ratio-dependent deleterious impacts of DON and T-2 mycotoxins on the growth and structural soundness of spinal structures in mice. These findings highlight the urgent need for a comprehensive understanding of the potential hazards these toxins pose to bone health, providing invaluable guidance for future toxicological research and public health strategies.</p></div>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":"250 ","pages":"Article 108079"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041010124006512","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Kashin-Beck Disease (KBD), an osteoarticular disorder, is influenced by various factors, including exposure to Deoxynivalenol (DON) and T-2 mycotoxins. This study systematically explored the impact of these mycotoxins on the development and structural resilience of spinal structures in mice, examining both isolated and combined effects. The experiment involved 72 male mice divided into nine groups, each subjected to varying concentrations of T-2, DON, or their combinations over four weeks. Rigorous monitoring included body weight, key indicators of bone metabolism, and cellular activities essential to bone health. Comprehensive evaluations using biomechanical analysis, x-ray, and micro-computed tomography (micro-CT) were conducted to assess alterations in spinal structure.
The findings revealed a pivotal aspect: mice exhibited a dose-dependent decline in body weight when exposed to individual mycotoxins, while simultaneous exposure produced an unanticipated antagonistic effect. Moreover, decreases were noted in levels of calcium, phosphorus, and vitamin D, coupled with changes in the activities of osteoblasts (increased) and osteoclasts (decreased), all intricately tied to the toxins' dosages and combinations. Notably, variations in the biomechanical properties corresponded with the mycotoxin dosage and blend, showing a decline in biomechanical strength. Micro-CT analyses further substantiated the profound toxic impact of the toxin dosage and mixtures on both the cortical and trabecular components of the spinal structures.
In summary, this investigation unequivocally illuminates the dose- and ratio-dependent deleterious impacts of DON and T-2 mycotoxins on the growth and structural soundness of spinal structures in mice. These findings highlight the urgent need for a comprehensive understanding of the potential hazards these toxins pose to bone health, providing invaluable guidance for future toxicological research and public health strategies.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.