Hui Che, Mischa Selig, Jasmin C Lauer, Melanie L Hart, Bernd Rolauffs
{"title":"Simple Methodology to Score Micropattern Quality and Effectiveness.","authors":"Hui Che, Mischa Selig, Jasmin C Lauer, Melanie L Hart, Bernd Rolauffs","doi":"10.1089/ten.TEC.2024.0141","DOIUrl":null,"url":null,"abstract":"<p><p>Micropatterns (MPs) are widely used as a powerful tool to control cell morphology and phenotype. However, methods for determining the effectiveness of how well cells are controlled by the shape of MPs have been inconsistently used and studies rarely report on this topic, indicating lack of standardization. We introduce an evaluation score that quantitatively assesses the MP fabrication quality and effectiveness, which can be broadly used in conjunction with all currently available MP design types. This score uses four simple and quick steps: (i) scoring MP and (ii) background fabrication quality, (iii) defining the type(s) of MP of interest, and (iv) assigning so-called efficiency descriptors describing cell behavior. These steps are based on visual inspection and quick categorization of various aspects of MP fabrication quality and cell behavior, presented in illustrations and microscopy image examples intended to serve as a reference \"atlas.\" To illustrate the advantage of using this score, we determined differences in cell morphology and F-actin intensity between scored versus nonscored cells. These measurements, which could be different in other studies, were chosen because both are understood as markers of cell phenotype and function. We combined intensity-calibrated immunofluorescence microscopy and image-based single cell protein analysis. Most important, significant differences in cell morphology and cytoskeletal protein content between scored versus nonscored cells were noted: the unconditional inclusion of all experimental read-outs (i.e., all MP data regardless of MP quality and effectiveness) into the final results significantly misjudged the experimental readouts versus only including experimental read-outs of quality-controlled and effective MPs, identified by scoring. Specifically, nonscoring underestimated the F-actin intensity per cell and quantitative cellular morphometric descriptors circularity and solidity and overestimated aspect ratio. Scoring improved the precision of cellular readouts, advocating the use of a MP quality and efficiency score as a quantitative decision-supporting tool in deciding whether or not particular MPs should be used for experiments, saving time and money. This simple scoring methodology can be used for improving MP fabrication, comparing results across studies, benefiting basic science studies and potential future clinical use of MPs by introducing standardization.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"501-511"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2024.0141","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Micropatterns (MPs) are widely used as a powerful tool to control cell morphology and phenotype. However, methods for determining the effectiveness of how well cells are controlled by the shape of MPs have been inconsistently used and studies rarely report on this topic, indicating lack of standardization. We introduce an evaluation score that quantitatively assesses the MP fabrication quality and effectiveness, which can be broadly used in conjunction with all currently available MP design types. This score uses four simple and quick steps: (i) scoring MP and (ii) background fabrication quality, (iii) defining the type(s) of MP of interest, and (iv) assigning so-called efficiency descriptors describing cell behavior. These steps are based on visual inspection and quick categorization of various aspects of MP fabrication quality and cell behavior, presented in illustrations and microscopy image examples intended to serve as a reference "atlas." To illustrate the advantage of using this score, we determined differences in cell morphology and F-actin intensity between scored versus nonscored cells. These measurements, which could be different in other studies, were chosen because both are understood as markers of cell phenotype and function. We combined intensity-calibrated immunofluorescence microscopy and image-based single cell protein analysis. Most important, significant differences in cell morphology and cytoskeletal protein content between scored versus nonscored cells were noted: the unconditional inclusion of all experimental read-outs (i.e., all MP data regardless of MP quality and effectiveness) into the final results significantly misjudged the experimental readouts versus only including experimental read-outs of quality-controlled and effective MPs, identified by scoring. Specifically, nonscoring underestimated the F-actin intensity per cell and quantitative cellular morphometric descriptors circularity and solidity and overestimated aspect ratio. Scoring improved the precision of cellular readouts, advocating the use of a MP quality and efficiency score as a quantitative decision-supporting tool in deciding whether or not particular MPs should be used for experiments, saving time and money. This simple scoring methodology can be used for improving MP fabrication, comparing results across studies, benefiting basic science studies and potential future clinical use of MPs by introducing standardization.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.