Genetic and Phenotypic Trends for Production and Reproduction Traits in Murrah Buffaloes.

IF 1.6 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Rohit Sharma, Satpal Dahiya, Yogesh Chandrakant Bangar, Renuka Hada, Dipin Chander Yadav
{"title":"Genetic and Phenotypic Trends for Production and Reproduction Traits in Murrah Buffaloes.","authors":"Rohit Sharma, Satpal Dahiya, Yogesh Chandrakant Bangar, Renuka Hada, Dipin Chander Yadav","doi":"10.1111/rda.14712","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of the study was to estimate genetic and phenotypic trends for first lactation production and reproduction traits in Murrah buffaloes. The information of pedigree and targeted traits of 640 Murrah buffaloes was collected for the period from 1997 to 2020. The first lactation production traits included first lactation milk yield (FLMY), 305 days first lactation milk yield (305FLMY), first lactation length (FLL), first lactation peak yield (FPY) whereas reproduction traits included first service period (FSP), first calving interval (FCI) and first dry period (FDP). Genetic and phenotypic trends were estimated. Phenotypic trends for FLMY, 305FLMY, FLL and FPY exhibited as 36.96 ± 8.58 kg/year, 31.93 ± 8.34 kg/year, 1.47 ± 0.55 days/year and 0.12 ± 0.02 kg/year, respectively and respective genetic trends exhibited as 3.73 ± 1.67 kg/year, 1.94 ± 0.76 kg/year, -0.15 ± 0.07 days/year and 0.01 ± 0.01 kg/year, respectively. It was revealed that there were significant (p < 0.05) and positive phenotypic trends for all production traits while genetic trends were significant (p < 0.05) for FLMY and 305FLMY traits. The phenotypic trends of studied reproductive traits indicated that only FDP trait significantly (p < 0.01) decreased (1.87 days/year) over time. For FSP and FCI traits, nonsignificant (p > 0.05) genetic and phenotypic trends indicated no change over time. This study highlighted potential challenges in maintaining reproductive efficiency alongside productivity improvements in Murrah buffaloes.</p>","PeriodicalId":21035,"journal":{"name":"Reproduction in Domestic Animals","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction in Domestic Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/rda.14712","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the study was to estimate genetic and phenotypic trends for first lactation production and reproduction traits in Murrah buffaloes. The information of pedigree and targeted traits of 640 Murrah buffaloes was collected for the period from 1997 to 2020. The first lactation production traits included first lactation milk yield (FLMY), 305 days first lactation milk yield (305FLMY), first lactation length (FLL), first lactation peak yield (FPY) whereas reproduction traits included first service period (FSP), first calving interval (FCI) and first dry period (FDP). Genetic and phenotypic trends were estimated. Phenotypic trends for FLMY, 305FLMY, FLL and FPY exhibited as 36.96 ± 8.58 kg/year, 31.93 ± 8.34 kg/year, 1.47 ± 0.55 days/year and 0.12 ± 0.02 kg/year, respectively and respective genetic trends exhibited as 3.73 ± 1.67 kg/year, 1.94 ± 0.76 kg/year, -0.15 ± 0.07 days/year and 0.01 ± 0.01 kg/year, respectively. It was revealed that there were significant (p < 0.05) and positive phenotypic trends for all production traits while genetic trends were significant (p < 0.05) for FLMY and 305FLMY traits. The phenotypic trends of studied reproductive traits indicated that only FDP trait significantly (p < 0.01) decreased (1.87 days/year) over time. For FSP and FCI traits, nonsignificant (p > 0.05) genetic and phenotypic trends indicated no change over time. This study highlighted potential challenges in maintaining reproductive efficiency alongside productivity improvements in Murrah buffaloes.

穆拉水牛生产和繁殖性状的遗传和表型趋势。
这项研究的目的是估测伊拉水牛第一次泌乳生产和繁殖性状的遗传和表型趋势。研究收集了 1997 年至 2020 年期间 640 头穆拉水牛的血统和目标性状信息。第一次泌乳生产性状包括第一次泌乳产奶量(FLMY)、305 天第一次泌乳产奶量(305FLMY)、第一次泌乳期长度(FLL)和第一次泌乳高峰产奶量(FPY),而繁殖性状包括第一次役期(FSP)、第一次产犊间隔(FCI)和第一次干乳期(FDP)。对遗传和表型趋势进行了估计。FLMY、305FLMY、FLL 和 FPY 的表型趋势分别为 36.96 ± 8.58 千克/年、31.93 ± 8.34 千克/年、1.47 ± 0.55 天/年和 0.12 ± 0.02 千克/年,遗传趋势分别为 3.73 ± 1.67 千克/年、1.94 ± 0.76 千克/年、-0.15 ± 0.07 天/年和 0.01 ± 0.01 千克/年。研究表明,遗传和表型趋势显著(p 0.05),表明随着时间的推移没有变化。这项研究强调了在提高莫拉水牛生产率的同时保持繁殖效率的潜在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reproduction in Domestic Animals
Reproduction in Domestic Animals 农林科学-奶制品与动物科学
CiteScore
3.00
自引率
5.90%
发文量
238
审稿时长
4-8 weeks
期刊介绍: The journal offers comprehensive information concerning physiology, pathology, and biotechnology of reproduction. Topical results are currently published in original papers, reviews, and short communications with particular attention to investigations on practicable techniques. Carefully selected reports, e. g. on embryo transfer and associated biotechnologies, gene transfer, and spermatology provide a link between basic research and clinical application. The journal applies to breeders, veterinarians, and biologists, and is also of interest in human medicine. Interdisciplinary cooperation is documented in the proceedings of the joint annual meetings. Fields of interest: Animal reproduction and biotechnology with special regard to investigations on applied and clinical research.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信