Proteomic Insights into Trichome Responses to Elevated Elemental Stress in Cation Exchanger (CAX) Mutants.

IF 3.9 2区 生物学 Q2 CELL BIOLOGY
Qi Guo, Shayan Sarkar, Tracy Punshon, Ryan Tappero, J Bronwyn Barkla, Kendal D Hirschi
{"title":"Proteomic Insights into Trichome Responses to Elevated Elemental Stress in Cation Exchanger (CAX) Mutants.","authors":"Qi Guo, Shayan Sarkar, Tracy Punshon, Ryan Tappero, J Bronwyn Barkla, Kendal D Hirschi","doi":"10.1093/pcp/pcae097","DOIUrl":null,"url":null,"abstract":"<p><p>Research on elemental distribution in plants is crucial for understanding nutrient uptake, environmental adaptation, and optimizing agricultural practices for sustainable food production. Plant trichomes, with their self-contained structures and easy accessibility, offer a robust model system for investigating elemental repartitioning. Transport proteins, such as the four functional cation exchangers (CAXs) in Arabidopsis, are low-affinity, high-capacity transporters primarily located on the vacuole. Mutants in these transporters have been partially characterized, with one of the phenotypes of the CAX1 mutant being altered tolerance to low-oxygen conditions. A simple visual screen demonstrated trichome density and morphology in cax1 and quadruple CAX (cax1-4: qKO) mutants remained unaltered. Here we used SXRF (Synchrotron X-Ray Fluorescence) to show that trichomes in CAX-deficient lines accumulated high levels of chlorine, potassium, calcium, and manganese. Proteomic analysis on isolated Arabidopsis trichomes. showed changes in protein abundance in response to changes in element accumulation. The CAX mutants showed an increased abundance of plasma membrane ATPase and vacuolar H-pumping proteins, and proteins associated with water movement and endocytosis, while also showing changes in proteins associated with the regulation of plasmodesmata. These findings advance our understanding of the integration of CAX transport with elemental homeostasis within trichomes and shed light on how plants modulate protein abundance under conditions of altered elemental levels.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae097","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Research on elemental distribution in plants is crucial for understanding nutrient uptake, environmental adaptation, and optimizing agricultural practices for sustainable food production. Plant trichomes, with their self-contained structures and easy accessibility, offer a robust model system for investigating elemental repartitioning. Transport proteins, such as the four functional cation exchangers (CAXs) in Arabidopsis, are low-affinity, high-capacity transporters primarily located on the vacuole. Mutants in these transporters have been partially characterized, with one of the phenotypes of the CAX1 mutant being altered tolerance to low-oxygen conditions. A simple visual screen demonstrated trichome density and morphology in cax1 and quadruple CAX (cax1-4: qKO) mutants remained unaltered. Here we used SXRF (Synchrotron X-Ray Fluorescence) to show that trichomes in CAX-deficient lines accumulated high levels of chlorine, potassium, calcium, and manganese. Proteomic analysis on isolated Arabidopsis trichomes. showed changes in protein abundance in response to changes in element accumulation. The CAX mutants showed an increased abundance of plasma membrane ATPase and vacuolar H-pumping proteins, and proteins associated with water movement and endocytosis, while also showing changes in proteins associated with the regulation of plasmodesmata. These findings advance our understanding of the integration of CAX transport with elemental homeostasis within trichomes and shed light on how plants modulate protein abundance under conditions of altered elemental levels.

蛋白质组学揭示阳离子交换器 (CAX) 突变体中毛状体对高元素压力的响应。
研究植物体内的元素分布对于了解养分吸收、环境适应以及优化农业实践以实现可持续粮食生产至关重要。植物毛状体具有自成一体的结构,易于接近,为研究元素再分配提供了一个强大的模型系统。转运蛋白,如拟南芥中的四种功能性阳离子交换体(CAXs),是一种低亲和性、高容量的转运体,主要位于液泡上。这些转运体的突变体已有部分特征,其中 CAX1 突变体的表型之一是对低氧条件的耐受性发生了改变。简单的视觉筛选表明,cax1 和四重 CAX(cax1-4: qKO)突变体的毛状体密度和形态没有改变。在这里,我们利用同步辐射 X 射线荧光(SXRF)显示,CAX 缺失株系的毛状体积累了大量的氯、钾、钙和锰。对分离的拟南芥毛状体进行的蛋白质组分析表明,蛋白质丰度的变化与元素积累的变化有关。CAX突变体的质膜ATP酶和液泡H-泵蛋白以及与水运动和内吞相关的蛋白丰度增加,同时与质膜调控相关的蛋白也发生了变化。这些发现加深了我们对CAX转运与毛状体内部元素平衡相结合的理解,并揭示了植物在元素水平改变的条件下如何调节蛋白质丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant and Cell Physiology
Plant and Cell Physiology 生物-细胞生物学
CiteScore
8.40
自引率
4.10%
发文量
166
审稿时长
1.7 months
期刊介绍: Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels. Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信