Felipe S Arruda, Fernanda D Tomé, Anália C Milhomem, Pablo I R Franco, Allisson B Justino, Rodrigo R Franco, Erica C Campos, Foued S Espindola, Danilo F Soave, Mara Rubia N Celes
{"title":"Curcumin Attenuates Doxorubicin-Induced Cardiac Oxidative Stress and Increases Survival in Mice.","authors":"Felipe S Arruda, Fernanda D Tomé, Anália C Milhomem, Pablo I R Franco, Allisson B Justino, Rodrigo R Franco, Erica C Campos, Foued S Espindola, Danilo F Soave, Mara Rubia N Celes","doi":"10.3390/pharmaceutics16081105","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX) is a potent chemotherapeutic agent used to treat multiple types of cancer, but its clinical application is limited by cardiotoxicity, mainly due to oxidative stress. Curcumin (CUR) is a natural polyphenolic compound with strong antioxidant properties, but its potential protective effects against DOX-induced cardiotoxicity need further investigation. This study aimed to evaluate CUR's efficacy in mitigating DOX-induced oxidative stress in the hearts of BALB/c mice. Mice received a DOX dose of 9 mg/kg or 16 mg/kg; half of the mice received daily doses of 100 mg/kg CUR for 15 days. Survival analysis, histopathological examination, and oxidative stress markers were assessed to determine the cardioprotective effects of CUR. Results showed that CUR significantly reduced oxidative damage and improved survival rates, particularly at the lower DOX dose (9 mg/kg). Mice treated with DOX-9 mg/kg plus CUR showed improved health conditions and reduced levels of reactive oxygen species (ROS), lipid peroxidation, sulfhydryl production, and protein carbonylation. Histopathological analysis confirmed reduced cardiac tissue damage. In conclusion, CUR combined with a lower dose of DOX effectively reduces oxidative stress and cardiac injury, enhancing survival in BALB/c mice. These findings suggest that CUR is a promising adjunct therapy to mitigate DOX-induced cardiotoxicity, potentially improving the DOX therapeutic index in cancer treatment.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16081105","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent used to treat multiple types of cancer, but its clinical application is limited by cardiotoxicity, mainly due to oxidative stress. Curcumin (CUR) is a natural polyphenolic compound with strong antioxidant properties, but its potential protective effects against DOX-induced cardiotoxicity need further investigation. This study aimed to evaluate CUR's efficacy in mitigating DOX-induced oxidative stress in the hearts of BALB/c mice. Mice received a DOX dose of 9 mg/kg or 16 mg/kg; half of the mice received daily doses of 100 mg/kg CUR for 15 days. Survival analysis, histopathological examination, and oxidative stress markers were assessed to determine the cardioprotective effects of CUR. Results showed that CUR significantly reduced oxidative damage and improved survival rates, particularly at the lower DOX dose (9 mg/kg). Mice treated with DOX-9 mg/kg plus CUR showed improved health conditions and reduced levels of reactive oxygen species (ROS), lipid peroxidation, sulfhydryl production, and protein carbonylation. Histopathological analysis confirmed reduced cardiac tissue damage. In conclusion, CUR combined with a lower dose of DOX effectively reduces oxidative stress and cardiac injury, enhancing survival in BALB/c mice. These findings suggest that CUR is a promising adjunct therapy to mitigate DOX-induced cardiotoxicity, potentially improving the DOX therapeutic index in cancer treatment.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.