Ziad Moussa, Sara Saada, Alejandro Perez Paz, Ahmed Alzamly, Zaher M A Judeh, Aaesha R Alshehhi, Aisha Khudhair, Salama A Almheiri, Harbi Tomah Al-Masri, Saleh A Ahmed
{"title":"Exclusive Solvent-Controlled Regioselective Catalytic Synthesis of Potentially Bioactive Imidazolidineiminodithiones: NMR Analysis, Computational Studies and X-ray Crystal Structures.","authors":"Ziad Moussa, Sara Saada, Alejandro Perez Paz, Ahmed Alzamly, Zaher M A Judeh, Aaesha R Alshehhi, Aisha Khudhair, Salama A Almheiri, Harbi Tomah Al-Masri, Saleh A Ahmed","doi":"10.3390/molecules29163958","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we describe the first consistent regiospecific reaction of isothiocyanates with a variety of substituted <i>N</i>-arylcyanothioformamides in a 1:1 molar ratio to generate a series of imidazolidineiminodithiones decorated with a multitude of functional groups on both aromatic rings. The reaction is carried out at room temperature using a 20 mol% catalytic amount of triethylamine with DMF as the solvent to selectively form the mentioned products with exclusive regioselectivity. The methodology features wide substrate scope, no requirement for chromatography, and good to high reaction yields. The products were isolated by simple ether/brine extraction and the structures were verified by multinuclear NMR spectroscopy and high accuracy mass measurements. The first conclusive molecular structure elucidation of the observed regioisomer was established by single-crystal X-ray diffraction analysis. Likewise, the tautomer of the <i>N</i>-arylcyanothioformamide reactant was proven by X-ray diffraction analysis. Density functional theory computations at the B3LYP-D4/def2-TZVP level in implicit DMF solvent were conducted to support the noted regiochemical outcome and proposed mechanism.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357535/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29163958","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we describe the first consistent regiospecific reaction of isothiocyanates with a variety of substituted N-arylcyanothioformamides in a 1:1 molar ratio to generate a series of imidazolidineiminodithiones decorated with a multitude of functional groups on both aromatic rings. The reaction is carried out at room temperature using a 20 mol% catalytic amount of triethylamine with DMF as the solvent to selectively form the mentioned products with exclusive regioselectivity. The methodology features wide substrate scope, no requirement for chromatography, and good to high reaction yields. The products were isolated by simple ether/brine extraction and the structures were verified by multinuclear NMR spectroscopy and high accuracy mass measurements. The first conclusive molecular structure elucidation of the observed regioisomer was established by single-crystal X-ray diffraction analysis. Likewise, the tautomer of the N-arylcyanothioformamide reactant was proven by X-ray diffraction analysis. Density functional theory computations at the B3LYP-D4/def2-TZVP level in implicit DMF solvent were conducted to support the noted regiochemical outcome and proposed mechanism.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.