Zhiheng Dong, Haibin Guan, Lu Wang, Lijuan Liang, Yifan Zang, Lan Wu, Lidao Bao
{"title":"<i>Carthamus tinctorius</i> <i>L.</i> inhibits hepatic fibrosis and hepatic stellate cell activation by targeting the PI3K/Akt/mTOR pathway.","authors":"Zhiheng Dong, Haibin Guan, Lu Wang, Lijuan Liang, Yifan Zang, Lan Wu, Lidao Bao","doi":"10.3892/mmr.2024.13314","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatic fibrosis (HF) is a process that occurs during the progression of several chronic liver diseases, for which there is a lack of effective treatment options. <i>Carthamus tinctorius L.</i> (CTL) is often used in Chinese or Mongolian medicine to treat liver diseases. However, its mechanism of action remains unclear. In the present study, CTL was used to treat rats with CCl4‑induced HF. The histopathological, biochemical and HF markers of the livers of the rats were analyzed, and CTL‑infused serum was used to treat hepatic stellate cells (HSCs) in order to detect the relevant markers of HSC activation. Protein expression pathways were detected both <i>in vitro</i> and <i>in vivo</i>. Histopathological results showed that CTL significantly improved CCl4‑induced liver injury, reduced aspartate aminotransferase and alanine aminotransferase levels, promoted E‑cadherin expression, and decreased α‑smooth muscle actin (SMA), SOX9, collagen I and hydroxyproline expression. Moreover, CTL‑infused serum was found to decrease α‑SMA and collagen I expression in HSCs. Further studies showed that CTL inhibited the activity of the PI3K/Akt/mTOR pathway in the rat livers. Following the administration of the PI3K agonist 740Y‑P to HSCs, the inhibitory effect of CTL on the PI3K/Akt//mTOR pathway was blocked. These results suggested that CTL can inhibit HF and HSC activation by inhibiting the PI3K/Akt/mTOR pathway.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391516/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13314","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatic fibrosis (HF) is a process that occurs during the progression of several chronic liver diseases, for which there is a lack of effective treatment options. Carthamus tinctorius L. (CTL) is often used in Chinese or Mongolian medicine to treat liver diseases. However, its mechanism of action remains unclear. In the present study, CTL was used to treat rats with CCl4‑induced HF. The histopathological, biochemical and HF markers of the livers of the rats were analyzed, and CTL‑infused serum was used to treat hepatic stellate cells (HSCs) in order to detect the relevant markers of HSC activation. Protein expression pathways were detected both in vitro and in vivo. Histopathological results showed that CTL significantly improved CCl4‑induced liver injury, reduced aspartate aminotransferase and alanine aminotransferase levels, promoted E‑cadherin expression, and decreased α‑smooth muscle actin (SMA), SOX9, collagen I and hydroxyproline expression. Moreover, CTL‑infused serum was found to decrease α‑SMA and collagen I expression in HSCs. Further studies showed that CTL inhibited the activity of the PI3K/Akt/mTOR pathway in the rat livers. Following the administration of the PI3K agonist 740Y‑P to HSCs, the inhibitory effect of CTL on the PI3K/Akt//mTOR pathway was blocked. These results suggested that CTL can inhibit HF and HSC activation by inhibiting the PI3K/Akt/mTOR pathway.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.