Yuan Liu, Zhixian Zhang, Zeyu Zhu, Yang Yang, Weijia Peng, Qiuhe Chen, Shinghung Mak, Karl Wahkeung Tism, Rongbiao Pi
{"title":"Cinnamic Acid Derivatives: Recent Discoveries and Development Strategies for Alzheimer's Disease.","authors":"Yuan Liu, Zhixian Zhang, Zeyu Zhu, Yang Yang, Weijia Peng, Qiuhe Chen, Shinghung Mak, Karl Wahkeung Tism, Rongbiao Pi","doi":"10.2174/0113895575330648240819112435","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that leads to cognitive decline and memory impairment. It is characterized by the accumulation of Amyloid-beta (Aβ) plaques, the abnormal phosphorylation of tau protein forming neurofibrillary tangles, and is often accompanied by neuroinflammation and oxidative stress, which contribute to neuronal loss and brain atrophy. At present, clinical anti-AD drugs are mostly single-target, improving the cognitive ability of AD patients, but failing to effectively slow down the progression of AD. Therefore, research on effective multi-target drugs for AD has become an urgent problem to address. The main derivatives of hydroxycinnamic acid, caffeic acid, and ferulic acid, are widely present in nature and have many pharmacological activities, such as antimicrobial, antioxidant, anti-inflammatory, neuroprotective, anti-Aβ deposition, and so on. The occurrence and development of AD are often accompanied by pathologies, such as oxidative stress, neuroinflammation, and Aβ deposition, suggesting that caffeic acid and ferulic acid can be used in the research on anti-AD drugs. Therefore, in this article, we have summarized the multi-target anti-AD derivatives based on caffeic acid and ferulic acid in recent years, and discussed the new design direction of cinnamic acid derivatives as backbone compounds. It is hoped that this review will provide some useful strategies for anti-AD drugs based on cinnamic acid derivatives.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575330648240819112435","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that leads to cognitive decline and memory impairment. It is characterized by the accumulation of Amyloid-beta (Aβ) plaques, the abnormal phosphorylation of tau protein forming neurofibrillary tangles, and is often accompanied by neuroinflammation and oxidative stress, which contribute to neuronal loss and brain atrophy. At present, clinical anti-AD drugs are mostly single-target, improving the cognitive ability of AD patients, but failing to effectively slow down the progression of AD. Therefore, research on effective multi-target drugs for AD has become an urgent problem to address. The main derivatives of hydroxycinnamic acid, caffeic acid, and ferulic acid, are widely present in nature and have many pharmacological activities, such as antimicrobial, antioxidant, anti-inflammatory, neuroprotective, anti-Aβ deposition, and so on. The occurrence and development of AD are often accompanied by pathologies, such as oxidative stress, neuroinflammation, and Aβ deposition, suggesting that caffeic acid and ferulic acid can be used in the research on anti-AD drugs. Therefore, in this article, we have summarized the multi-target anti-AD derivatives based on caffeic acid and ferulic acid in recent years, and discussed the new design direction of cinnamic acid derivatives as backbone compounds. It is hoped that this review will provide some useful strategies for anti-AD drugs based on cinnamic acid derivatives.