Jean Le Pennec, Amaury Guibert, Raviteja Gurram, Antoine Delon, Romain R Vivès, Elisa Migliorini
{"title":"BMP2 Binds Non-Specifically to PEG-Passivated Biomaterials and Induces pSMAD 1/5/9 Signalling.","authors":"Jean Le Pennec, Amaury Guibert, Raviteja Gurram, Antoine Delon, Romain R Vivès, Elisa Migliorini","doi":"10.1002/mabi.202400169","DOIUrl":null,"url":null,"abstract":"<p><p>Biomaterials are widely employed across diverse biomedical applications and represent an attractive strategy to explore how extracellular matrix components influence cellular response. In this study, the previously developed streptavidin platforms is aimed to use to investigate the role of glycosaminoglycans (GAGs) in bone morphogenetic protein 2 (BMP2) signaling. However, it is observed that the interpretation of findings is skewed due to the GAG-unrelated, non-specific binding of BMP2 on components of biomaterials. Non-specific adsorption of proteins is a recurrent and challenging issue for biomaterial studies. Despite the initial incorporation of anti-fouling polyethylene glycol (PEG) chains within biomaterials, the residual non-specific BMP2 adsorption still triggered BMP2 signaling within the same range as conditions of interest. The various options are explored to prevent BMP2 non-specific adsorption and a successful blocking condition involving a combination of bovine serum albumin and trehalose are identified. Furthermore, the effect of this blocking step improved when using gold platforms instead of glass, particularly with Chinese hamster ovary (CHO) cells. With this specific example, it is suggested that non-specific adsorption of BMPs on biomaterials may be a general concern - often undetected by classical surface-sensitive techniques - that needs to be addressed to better interpret cellular responses.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400169","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomaterials are widely employed across diverse biomedical applications and represent an attractive strategy to explore how extracellular matrix components influence cellular response. In this study, the previously developed streptavidin platforms is aimed to use to investigate the role of glycosaminoglycans (GAGs) in bone morphogenetic protein 2 (BMP2) signaling. However, it is observed that the interpretation of findings is skewed due to the GAG-unrelated, non-specific binding of BMP2 on components of biomaterials. Non-specific adsorption of proteins is a recurrent and challenging issue for biomaterial studies. Despite the initial incorporation of anti-fouling polyethylene glycol (PEG) chains within biomaterials, the residual non-specific BMP2 adsorption still triggered BMP2 signaling within the same range as conditions of interest. The various options are explored to prevent BMP2 non-specific adsorption and a successful blocking condition involving a combination of bovine serum albumin and trehalose are identified. Furthermore, the effect of this blocking step improved when using gold platforms instead of glass, particularly with Chinese hamster ovary (CHO) cells. With this specific example, it is suggested that non-specific adsorption of BMPs on biomaterials may be a general concern - often undetected by classical surface-sensitive techniques - that needs to be addressed to better interpret cellular responses.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.