Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system.

IF 1.9 4区 生物学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Qingyi Lin, Koki Takebayashi, Nanaka Torigoe, Bin Liu, Zhao Namula, Maki Hirata, Fuminori Tanihara, Megumi Nagahara, Takeshige Otoi
{"title":"Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system.","authors":"Qingyi Lin, Koki Takebayashi, Nanaka Torigoe, Bin Liu, Zhao Namula, Maki Hirata, Fuminori Tanihara, Megumi Nagahara, Takeshige Otoi","doi":"10.1262/jrd.2024-054","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alpha-galactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h. In Experiment 1, we evaluated the mutation efficiency of gRNAs targeting either GHR or GGTA1 in zygotes transfected using LP2000 and cultured in 4-well plates. In Experiment 2, we examined the effects of the culture method on the development, mutation rate, and mutation efficiency of zygotes with simultaneouslydouble-edited GHR and GGTA1, cultured using 4-well (group culture) and 25-well plates (individual culture). In Experiment 3, we assessed the effect of additional GHR-targeted lipofection before and after simultaneous double gRNA-targeted lipofection on the mutation efficiency of edited embryos cultured in 25-well plates. No significant differences in mutation rates were observed between the zygotes edited with either gRNA. Moreover, the formation rate of blastocysts derived from GHR and GGTA1 double-edited zygotes was significantly increased in the 25-well plate culture compared to that in the 4-well plate culture. However, mutations were only observed in GGTA1 when zygotes were transfected with both gRNAs, irrespective of the culture method used. GHR mutations were detected only in blastocysts derived from zygotes subjected to GHR-targeted lipofection before simultaneous double gRNA-targeted lipofection. Overall, our results suggest that additional lipofection before simultaneous double gRNA-targeted lipofection induces additional mutations in the zygotes.</p>","PeriodicalId":16942,"journal":{"name":"Journal of Reproduction and Development","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2024-054","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alpha-galactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h. In Experiment 1, we evaluated the mutation efficiency of gRNAs targeting either GHR or GGTA1 in zygotes transfected using LP2000 and cultured in 4-well plates. In Experiment 2, we examined the effects of the culture method on the development, mutation rate, and mutation efficiency of zygotes with simultaneouslydouble-edited GHR and GGTA1, cultured using 4-well (group culture) and 25-well plates (individual culture). In Experiment 3, we assessed the effect of additional GHR-targeted lipofection before and after simultaneous double gRNA-targeted lipofection on the mutation efficiency of edited embryos cultured in 25-well plates. No significant differences in mutation rates were observed between the zygotes edited with either gRNA. Moreover, the formation rate of blastocysts derived from GHR and GGTA1 double-edited zygotes was significantly increased in the 25-well plate culture compared to that in the 4-well plate culture. However, mutations were only observed in GGTA1 when zygotes were transfected with both gRNAs, irrespective of the culture method used. GHR mutations were detected only in blastocysts derived from zygotes subjected to GHR-targeted lipofection before simultaneous double gRNA-targeted lipofection. Overall, our results suggest that additional lipofection before simultaneous double gRNA-targeted lipofection induces additional mutations in the zygotes.

利用 CRISPR/Cas9 系统,通过脂质转染两种引导 RNA 对猪子一代进行基因组编辑。
通过电穿孔进行基于CRISPR/Cas9的多重基因组编辑相对高效;然而,脂质体感染因其易用性和低成本而用途广泛。在这里,我们的目的是利用生长激素受体(GHR)和糖蛋白α-半乳糖基转移酶1(GGTA1)靶向向导RNA(gRNAs)确定脂质体感染在基于CRISPR/Cas9的多重基因组编辑中的效率。在实验 1 中,我们评估了使用 LP2000 转染并在 4 孔板中培养的无透明带子代中靶向 GHR 或 GGTA1 的 gRNA 的突变效率。在实验 2 中,我们检测了培养方法对同时进行 GHR 和 GGTA1 双编辑的子代的发育、突变率和突变效率的影响,这些子代分别用 4 孔板(群体培养)和 25 孔板(个体培养)培养。在实验 3 中,我们评估了在同时进行双 gRNA 靶向脂质转染之前和之后进行额外的 GHR 靶向脂质转染对在 25 孔板中培养的编辑胚胎突变效率的影响。使用两种 gRNA 编辑的胚胎在突变率上没有明显差异。此外,与 4 孔板培养相比,25 孔板培养的 GHR 和 GGTA1 双编辑子代胚胎的囊胚形成率明显增加。然而,无论使用哪种培养方法,只有在转染两种 gRNA 的子囊胚胎中才能观察到 GGTA1 的突变。只有在同时进行双 gRNA 靶向脂质体转染之前进行 GHR 靶向脂质体转染的子囊所产生的囊胚中才检测到 GHR 突变。总之,我们的研究结果表明,在同时进行双 gRNA 靶向脂质感染之前进行额外的脂质感染会诱导子囊中出现额外的突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Reproduction and Development
Journal of Reproduction and Development 生物-奶制品与动物科学
CiteScore
3.70
自引率
11.10%
发文量
52
审稿时长
2 months
期刊介绍: Journal of Reproduction and Development (JRD) is the official journal of the Society for Reproduction and Development, published bimonthly, and welcomes original articles. JRD provides free full-text access of all the published articles on the web. The functions of the journal are managed by Editorial Board Members, such as the Editor-in-Chief, Co-Editor-inChief, Managing Editors and Editors. All manuscripts are peer-reviewed critically by two or more reviewers. Acceptance is based on scientific content and presentation of the materials. The Editors select reviewers and correspond with authors. Final decisions about acceptance or rejection of manuscripts are made by the Editor-in-Chief and Co-Editor-in-Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信