Detection of reproductive interference between closely related Salvia species with small-scale separated distributions by multifaceted pollination and molecular analyses.

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Sachiko Nishida, Atsuko Takano, Yoshihisa Suyama, Satoshi Kakishima
{"title":"Detection of reproductive interference between closely related Salvia species with small-scale separated distributions by multifaceted pollination and molecular analyses.","authors":"Sachiko Nishida, Atsuko Takano, Yoshihisa Suyama, Satoshi Kakishima","doi":"10.1007/s10265-024-01577-6","DOIUrl":null,"url":null,"abstract":"<p><p>Reproductive interference, an interspecific interaction in reproductive process that exerts an adverse effect, has gained attention as a contributing factor in promoting exclusive distributions between closely related species. However, detailed studies on the possibility of reproductive interference between native plants are still lacking, presumably because strong reproductive interference can rapidly realize exclusive distributions, leaving the two species apparently independent. Salvia japonica and S. lutescens are found in separate localities at a small scale, although their distributions overlap at a large scale. We investigated the possibility of reproductive interference between them through field surveys, hand-pollination experiments, evaluation of hybrid fertility, cpDNA and nrDNA genotyping, and genome-wide DNA analysis. The field survey results did not reveal apparent negative interaction in competition for pollinator services. Mixed pollination with conspecific pollen and counterpart pollen reduced seed set in S. japonica, and hybrid progeny produced by mixed pollination were less than 20% as fertile compared to the pure species. The DNA genotyping results suggested the possibility of hybridization where their distributions overlap, and the genome-wide DNA analysis results showed clear genetic differentiation between the two species as well as the existence of hybrids. These results suggest that bi-directional reproductive interference between S. japonica and S. lutescens may have led to their present separated distributions at a small scale.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01577-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reproductive interference, an interspecific interaction in reproductive process that exerts an adverse effect, has gained attention as a contributing factor in promoting exclusive distributions between closely related species. However, detailed studies on the possibility of reproductive interference between native plants are still lacking, presumably because strong reproductive interference can rapidly realize exclusive distributions, leaving the two species apparently independent. Salvia japonica and S. lutescens are found in separate localities at a small scale, although their distributions overlap at a large scale. We investigated the possibility of reproductive interference between them through field surveys, hand-pollination experiments, evaluation of hybrid fertility, cpDNA and nrDNA genotyping, and genome-wide DNA analysis. The field survey results did not reveal apparent negative interaction in competition for pollinator services. Mixed pollination with conspecific pollen and counterpart pollen reduced seed set in S. japonica, and hybrid progeny produced by mixed pollination were less than 20% as fertile compared to the pure species. The DNA genotyping results suggested the possibility of hybridization where their distributions overlap, and the genome-wide DNA analysis results showed clear genetic differentiation between the two species as well as the existence of hybrids. These results suggest that bi-directional reproductive interference between S. japonica and S. lutescens may have led to their present separated distributions at a small scale.

Abstract Image

通过多方面的授粉和分子分析,检测小范围内分布分离的近缘丹参物种之间的生殖干扰。
生殖干扰是指在生殖过程中产生不利影响的种间相互作用,它作为促进近缘物种之间排他性分布的一个因素而受到关注。然而,有关本地植物间生殖干扰可能性的详细研究仍然缺乏,这可能是因为强烈的生殖干扰会迅速实现排他性分布,使两个物种表面上看似独立。Salvia japonica 和 S. lutescens 在小范围内分布在不同的地方,但在大范围内它们的分布是重叠的。我们通过野外调查、人工授粉实验、杂交育种能力评估、cpDNA 和 nrDNA 基因分型以及全基因组 DNA 分析,研究了它们之间生殖干扰的可能性。田间调查结果显示,在授粉者服务竞争方面没有明显的负面相互作用。用同种花粉和对等花粉混合授粉会降低 S. japonica 的结籽率,混合授粉产生的杂交后代的繁殖力低于纯种的 20%。DNA 基因分型结果表明,在两个物种分布重叠的地方存在杂交的可能性,而全基因组 DNA 分析结果表明,两个物种之间存在明显的遗传分化以及杂交种的存在。这些结果表明,S. japonica 和 S. lutescens 之间的双向生殖干扰可能导致了它们目前在小范围内的分布分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信