{"title":"High Bioavailability of Spinach Folate Evaluated by Functional Biomarkers in a Folate Depletion-Repletion Mouse Model.","authors":"Keizo Umegaki, Aya Ozeki, Kaori Yokotani","doi":"10.3177/jnsv.70.305","DOIUrl":null,"url":null,"abstract":"<p><p>The bioavailability of natural folates is 50% lower than that of synthetic folic acid (FA); however, it remains unclear whether this value is universally applicable to all foods. Therefore, the present study investigated the bioavailability of folate from spinach using multiple biomarkers in a folate depletion-repletion mouse model. Mice were fed a folate-deficient diet for 4 wk and subsequently divided into three groups: folate-deficient, FA, and spinach folate. The folate repletion group received either FA or spinach folate at 2 mg/kg diet for 9 d. On the 7th day of repletion, half of each group underwent low-dose total body X-ray irradiation to induce chromosomal damage in bone marrow. Folate bioavailability biomarkers included measurements of folate levels in plasma, liver, and bone marrow along with an analysis of plasma homocysteine levels and chromosome damage, both of which are functional biomarkers of body folate. The consumption of a folate-deficient diet led to decreased tissue folate levels, increased plasma homocysteine levels, and chromosomal damage. Repletion with spinach folate restored folate levels in plasma, liver, and bone marrow to 69, 13, and 68%, respectively, of FA levels. Additionally, spinach folate repletion reduced plasma homocysteine levels and chromosome damage to 83% and 93-117%, respectively, of FA levels. Collectively, the present results demonstrated that the bioavailability of spinach folate exceeded 83% of FA, particularly when assessed using functional biomarkers.</p>","PeriodicalId":16624,"journal":{"name":"Journal of nutritional science and vitaminology","volume":"70 4","pages":"305-310"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nutritional science and vitaminology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3177/jnsv.70.305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
The bioavailability of natural folates is 50% lower than that of synthetic folic acid (FA); however, it remains unclear whether this value is universally applicable to all foods. Therefore, the present study investigated the bioavailability of folate from spinach using multiple biomarkers in a folate depletion-repletion mouse model. Mice were fed a folate-deficient diet for 4 wk and subsequently divided into three groups: folate-deficient, FA, and spinach folate. The folate repletion group received either FA or spinach folate at 2 mg/kg diet for 9 d. On the 7th day of repletion, half of each group underwent low-dose total body X-ray irradiation to induce chromosomal damage in bone marrow. Folate bioavailability biomarkers included measurements of folate levels in plasma, liver, and bone marrow along with an analysis of plasma homocysteine levels and chromosome damage, both of which are functional biomarkers of body folate. The consumption of a folate-deficient diet led to decreased tissue folate levels, increased plasma homocysteine levels, and chromosomal damage. Repletion with spinach folate restored folate levels in plasma, liver, and bone marrow to 69, 13, and 68%, respectively, of FA levels. Additionally, spinach folate repletion reduced plasma homocysteine levels and chromosome damage to 83% and 93-117%, respectively, of FA levels. Collectively, the present results demonstrated that the bioavailability of spinach folate exceeded 83% of FA, particularly when assessed using functional biomarkers.
期刊介绍:
The Journal of Nutritional Science and Vitaminology is an international medium publishing in English of original work in all branches of nutritional science, food science and vitaminology from any country.
Manuscripts submitted for publication should be as concise as possible and must be based on the results of original research or of original interpretation of existing knowledge not previously published. Although data may have been reported, in part, in preliminary or
abstract form, a full report of such research is unacceptable if it has been or will be submitted for consideration by another journal.