The mutual influence of microtubules and the cortical ER on their coordinated organisation

IF 1.5 4区 工程技术 Q3 MICROSCOPY
Lalita Pal, Eduard Belausov, Vikas Dwivedi, Sela Yechezkel, Einat Sadot
{"title":"The mutual influence of microtubules and the cortical ER on their coordinated organisation","authors":"Lalita Pal,&nbsp;Eduard Belausov,&nbsp;Vikas Dwivedi,&nbsp;Sela Yechezkel,&nbsp;Einat Sadot","doi":"10.1111/jmi.13356","DOIUrl":null,"url":null,"abstract":"<p>The endoplasmic reticulum (ER) is the largest organelle in terms of membrane content, occupying the entire cytoplasmic volume. It is tethered to the cell cortex through ER-plasma membrane contact sites (EPCS). Previous studies have shown that EPCSs labelled by VAP27 align with cortical microtubules, and that ER tubules elongate along microtubules. Here, we addressed the question whether this relationship is bidirectional, with EPCSs influencing microtubule organisation. Using TIRF microscopy to track EPCSs and microtubule dynamics simultaneously, we demonstrate that while EPCSs remain stable, microtubules are highly dynamic and can adjust their positioning based on nearby EPCS in Arabidopsis cotyledon epidermis. In lobes of epidermal cells enclosed by two indentations, where microtubules bundle together, EPCSs flank the bundles and exhibit a distinctive arrangement, forming symmetric arcs in relation to the lobe axis. In guard cells, transversely oriented ER tubules co-align with microtubules. Disrupting microtubules with the drug oryzalin leads to transient guard cells-ER remodelling, followed by its reorganisation into transverse tubules before microtubule recovery. Taken together our observations suggest, that the positioning of EPCSs and cortical microtubules, can affect each other and the organisation of cortical ER.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"297 1","pages":"96-104"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13356","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

The endoplasmic reticulum (ER) is the largest organelle in terms of membrane content, occupying the entire cytoplasmic volume. It is tethered to the cell cortex through ER-plasma membrane contact sites (EPCS). Previous studies have shown that EPCSs labelled by VAP27 align with cortical microtubules, and that ER tubules elongate along microtubules. Here, we addressed the question whether this relationship is bidirectional, with EPCSs influencing microtubule organisation. Using TIRF microscopy to track EPCSs and microtubule dynamics simultaneously, we demonstrate that while EPCSs remain stable, microtubules are highly dynamic and can adjust their positioning based on nearby EPCS in Arabidopsis cotyledon epidermis. In lobes of epidermal cells enclosed by two indentations, where microtubules bundle together, EPCSs flank the bundles and exhibit a distinctive arrangement, forming symmetric arcs in relation to the lobe axis. In guard cells, transversely oriented ER tubules co-align with microtubules. Disrupting microtubules with the drug oryzalin leads to transient guard cells-ER remodelling, followed by its reorganisation into transverse tubules before microtubule recovery. Taken together our observations suggest, that the positioning of EPCSs and cortical microtubules, can affect each other and the organisation of cortical ER.

Abstract Image

微管和皮质ER对其协调组织的相互影响
内质网(ER)是膜含量最大的细胞器,占据整个细胞质体积。它通过ER-质膜接触点(EPCS)与细胞皮层相连。以前的研究表明,用 VAP27 标记的 EPCS 与皮层微管对齐,ER 小管沿着微管伸长。在这里,我们探讨了这种关系是否是双向的,EPCS是否会影响微管的组织。利用 TIRF 显微镜同时跟踪 EPCS 和微管的动态,我们证明了当 EPCS 保持稳定时,微管是高度动态的,并且可以根据拟南芥子叶表皮中附近的 EPCS 调整其定位。在微管捆绑在一起的由两个缩口围成的表皮细胞叶中,EPCS位于微管束的两侧,并表现出独特的排列方式,形成与叶轴对称的弧形。在保卫细胞中,横向的ER小管与微管共同排列。用药物奥利唑啉干扰微管会导致短暂的保卫细胞-ER 重塑,随后在微管恢复之前,ER 重组成横向小管。总之,我们的观察结果表明,EPCSs 和皮层微管的定位会相互影响,并影响皮层 ER 的组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信