{"title":"Evolution and development of the conduction system in the vertebrate heart: a role for hemodynamics and the epicardium.","authors":"Robert E Poelmann","doi":"10.1242/jeb.247628","DOIUrl":null,"url":null,"abstract":"<p><p>Development of the heart is a very intricate and multiplex process as it involves not only the three spatial dimensions but also the fourth or time dimension. Over time, the heart of an embryo needs to adapt its function to serve the increasing complexity of differentiation and growth towards adulthood. It becomes even more perplexing by expanding time into millions of years, allocating related species in the tree of life. As the evolution of soft tissues can hardly be studied, we have to rely on comparative embryology, supported heavily by genetic and molecular approaches. These techniques provide insight into relationships, not only between species, but also between cell populations, signaling mechanisms, molecular interactions and physical factors such as hemodynamics. Heart development depends on differentiation of a mesodermal cell population that - in more derived taxa - continues in segmentation of the first and second heart field. These fields deliver not only the cardiomyocytes, forming the three-dimensionally looping cardiac tube as a basis for the chambered heart, but also the enveloping epicardium. The synchronized beating of the heart is then organized by the conduction system. In this Review, the epicardium is introduced as an important player in cardiac differentiation, including the conduction system.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247628","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Development of the heart is a very intricate and multiplex process as it involves not only the three spatial dimensions but also the fourth or time dimension. Over time, the heart of an embryo needs to adapt its function to serve the increasing complexity of differentiation and growth towards adulthood. It becomes even more perplexing by expanding time into millions of years, allocating related species in the tree of life. As the evolution of soft tissues can hardly be studied, we have to rely on comparative embryology, supported heavily by genetic and molecular approaches. These techniques provide insight into relationships, not only between species, but also between cell populations, signaling mechanisms, molecular interactions and physical factors such as hemodynamics. Heart development depends on differentiation of a mesodermal cell population that - in more derived taxa - continues in segmentation of the first and second heart field. These fields deliver not only the cardiomyocytes, forming the three-dimensionally looping cardiac tube as a basis for the chambered heart, but also the enveloping epicardium. The synchronized beating of the heart is then organized by the conduction system. In this Review, the epicardium is introduced as an important player in cardiac differentiation, including the conduction system.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.