Parkin activates innate immunity and promotes anti-tumor immune responses.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Michela Perego, Minjeong Yeon, Ekta Agarwal, Andrew T Milcarek, Irene Bertolini, Chiara Camisaschi, Jagadish C Ghosh, Hsin-Yao Tang, Nathalie Grandvaux, Marcus Ruscetti, Andrew V Kossenkov, Sarah Preston-Alp, Italo Tempera, Noam Auslander, Dario C Altieri
{"title":"Parkin activates innate immunity and promotes anti-tumor immune responses.","authors":"Michela Perego, Minjeong Yeon, Ekta Agarwal, Andrew T Milcarek, Irene Bertolini, Chiara Camisaschi, Jagadish C Ghosh, Hsin-Yao Tang, Nathalie Grandvaux, Marcus Ruscetti, Andrew V Kossenkov, Sarah Preston-Alp, Italo Tempera, Noam Auslander, Dario C Altieri","doi":"10.1172/JCI180983","DOIUrl":null,"url":null,"abstract":"<p><p>The activation of innate immunity and associated interferon (IFN) signaling have been implicated in cancer, but the regulators are elusive and a link to tumor suppression undetermined. Here, we found that Parkin, an E3 ubiquitin ligase altered in Parkinson's Disease was epigenetically silenced in cancer and its re-expression by clinically approved demethylating therapy stimulated transcription of a potent IFN response in tumor cells. This pathway required Parkin E3 ubiquitin ligase activity, involved the subcellular trafficking and release of the alarmin High Mobility Group Box 1 (HMGB1) and was associated with inhibition of NFκB gene expression. In turn, Parkin-expressing cells released an IFN secretome that upregulated effector and cytotoxic CD8 T cell markers, lowered the expression of immune inhibitory receptors, TIM3 and LAG3, and stimulated high content of the self-renewal/stem cell factor, TCF1. Parkin-induced CD8 T cells selectively accumulated in the microenvironment and inhibited transgenic and syngeneic tumor growth, in vivo. Therefore, Parkin is an epigenetically regulated activator of innate immunity and dual mode tumor suppressor, inhibiting intrinsic tumor traits of metabolism and cell invasion, while simultaneously reinvigorating CD8 T cell functions in the microenvironment.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI180983","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The activation of innate immunity and associated interferon (IFN) signaling have been implicated in cancer, but the regulators are elusive and a link to tumor suppression undetermined. Here, we found that Parkin, an E3 ubiquitin ligase altered in Parkinson's Disease was epigenetically silenced in cancer and its re-expression by clinically approved demethylating therapy stimulated transcription of a potent IFN response in tumor cells. This pathway required Parkin E3 ubiquitin ligase activity, involved the subcellular trafficking and release of the alarmin High Mobility Group Box 1 (HMGB1) and was associated with inhibition of NFκB gene expression. In turn, Parkin-expressing cells released an IFN secretome that upregulated effector and cytotoxic CD8 T cell markers, lowered the expression of immune inhibitory receptors, TIM3 and LAG3, and stimulated high content of the self-renewal/stem cell factor, TCF1. Parkin-induced CD8 T cells selectively accumulated in the microenvironment and inhibited transgenic and syngeneic tumor growth, in vivo. Therefore, Parkin is an epigenetically regulated activator of innate immunity and dual mode tumor suppressor, inhibiting intrinsic tumor traits of metabolism and cell invasion, while simultaneously reinvigorating CD8 T cell functions in the microenvironment.

帕金激活先天性免疫,促进抗肿瘤免疫反应。
先天性免疫的激活和相关的干扰素(IFN)信号传导与癌症有牵连,但调节因素难以捉摸,与肿瘤抑制的联系也未确定。在这里,我们发现在帕金森病中发生改变的E3泛素连接酶Parkin在癌症中被表观遗传沉默,而通过临床认可的去甲基化疗法重新表达Parkin可刺激肿瘤细胞转录强效的IFN反应。这一途径需要Parkin E3泛素连接酶的活性,涉及警戒素高迁移率组盒1(HMGB1)的亚细胞迁移和释放,并与抑制NFκB基因表达有关。反过来,表达 Parkin 的细胞释放 IFN 分泌组,上调效应和细胞毒性 CD8 T 细胞标记物,降低免疫抑制受体 TIM3 和 LAG3 的表达,并刺激自我更新/干细胞因子 TCF1 的高含量。Parkin 诱导的 CD8 T 细胞选择性地在微环境中积累,并抑制转基因和合成肿瘤的体内生长。因此,Parkin 是一种受表观遗传调控的先天性免疫激活因子和双模式肿瘤抑制因子,可抑制肿瘤内在的新陈代谢和细胞侵袭特性,同时重振微环境中 CD8 T 细胞的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信