Targeted polymeric primaquine nanoparticles: optimization, evaluation, and in-vivo liver uptake for improved malaria treatment.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Sarvesh Bhargava, Hitesh Kumar Dewangan, Rohitas Deshmukh
{"title":"Targeted polymeric primaquine nanoparticles: optimization, evaluation, and in-vivo liver uptake for improved malaria treatment.","authors":"Sarvesh Bhargava, Hitesh Kumar Dewangan, Rohitas Deshmukh","doi":"10.1080/09205063.2024.2391225","DOIUrl":null,"url":null,"abstract":"<p><p>Primaquine (PQ) is a widely used antimalarial drug, but its high dosage requirements can lead to significant tissue damage and adverse gastrointestinal and hematological effects. Recent studies have shown that nanoformulations can enhance the bioavailability of pharmaceuticals, thereby increasing efficacy, reducing dosing frequency, and minimizing toxicity. In this study, PQ-loaded PLGA nanoparticles (PQ-NPs) were prepared using a modified double emulsion solvent evaporation technique (w/o/w). The PQ-NPs exhibited a mean particle size of 228 ± 2.6 nm, a zeta potential of +27.4 mV, and an encapsulation efficiency of 81.3 ± 3.5%. Scanning electron microscopy (SEM) confirmed their spherical morphology, and the <i>in vitro</i> release profile demonstrated continuous drug release over 72 h. Differential scanning calorimetry (DSC) thermograms indicated that the drug was present in the nanoparticles, with improved physical stability. Fourier-transform infrared spectroscopy (FTIR) analysis showed no interactions between the various substances in the NPs. <i>In vivo</i> studies in Swiss albino mice infected with <i>Plasmodium berghei</i> revealed that the nanoformulated PQ was 20% more effective than the standard oral dose. Biodistribution studies indicated that 80% of the NPs accumulated in the liver, highlighting their potential for targeted drug delivery. This research demonstrates the successful development of a nanomedicine delivery system for antimalarial drugs, offering a promising strategy to enhance treatment efficacy while reducing adverse effects.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2867-2883"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2391225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Primaquine (PQ) is a widely used antimalarial drug, but its high dosage requirements can lead to significant tissue damage and adverse gastrointestinal and hematological effects. Recent studies have shown that nanoformulations can enhance the bioavailability of pharmaceuticals, thereby increasing efficacy, reducing dosing frequency, and minimizing toxicity. In this study, PQ-loaded PLGA nanoparticles (PQ-NPs) were prepared using a modified double emulsion solvent evaporation technique (w/o/w). The PQ-NPs exhibited a mean particle size of 228 ± 2.6 nm, a zeta potential of +27.4 mV, and an encapsulation efficiency of 81.3 ± 3.5%. Scanning electron microscopy (SEM) confirmed their spherical morphology, and the in vitro release profile demonstrated continuous drug release over 72 h. Differential scanning calorimetry (DSC) thermograms indicated that the drug was present in the nanoparticles, with improved physical stability. Fourier-transform infrared spectroscopy (FTIR) analysis showed no interactions between the various substances in the NPs. In vivo studies in Swiss albino mice infected with Plasmodium berghei revealed that the nanoformulated PQ was 20% more effective than the standard oral dose. Biodistribution studies indicated that 80% of the NPs accumulated in the liver, highlighting their potential for targeted drug delivery. This research demonstrates the successful development of a nanomedicine delivery system for antimalarial drugs, offering a promising strategy to enhance treatment efficacy while reducing adverse effects.

靶向聚合伯氨喹纳米粒子:优化、评估和体内肝脏吸收,以改善疟疾治疗。
普利马喹(Primaquine,PQ)是一种广泛使用的抗疟药物,但其高剂量要求会导致严重的组织损伤,并对胃肠道和血液系统产生不良影响。最近的研究表明,纳米制剂可以提高药物的生物利用度,从而提高疗效、减少给药次数并将毒性降至最低。本研究采用改良的双乳液溶剂蒸发技术(w/o/w)制备了负载 PQ 的 PLGA 纳米粒子(PQ-NPs)。PQ-NPs 的平均粒径为 228 ± 2.6 nm,zeta 电位为 +27.4 mV,封装效率为 81.3 ± 3.5%。扫描电子显微镜(SEM)证实了它们的球形形态,体外释放曲线显示药物在 72 小时内持续释放。差示扫描量热法(DSC)热图显示药物存在于纳米颗粒中,并提高了物理稳定性。傅立叶变换红外光谱(FTIR)分析表明,纳米粒子中的各种物质之间没有相互作用。在感染了贝氏疟原虫的瑞士白化小鼠体内进行的研究表明,纳米化的 PQ 比标准口服剂量的效果高出 20%。生物分布研究表明,80% 的 NPs 聚集在肝脏中,突出了其靶向给药的潜力。这项研究表明,抗疟药物纳米药物递送系统的成功开发,为提高疗效、减少不良反应提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信