Fabrication of ibuprofen/naringenin-coloaded into zein/sodium caseinate nanoparticles: evaluation of antiproliferative activity and apoptosis induction in liver cancer cells.
Hesham S Almoallim, Hossam M Aljawdah, Muruganantham Bharathi, Raja Manickam, Suha Mujahed Abudoleh, Samer Hasan Hussein-Al-Ali, Parthasarathy Surya
{"title":"Fabrication of ibuprofen/naringenin-coloaded into zein/sodium caseinate nanoparticles: evaluation of antiproliferative activity and apoptosis induction in liver cancer cells.","authors":"Hesham S Almoallim, Hossam M Aljawdah, Muruganantham Bharathi, Raja Manickam, Suha Mujahed Abudoleh, Samer Hasan Hussein-Al-Ali, Parthasarathy Surya","doi":"10.1080/09205063.2024.2391653","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, liver cancer is one of the most disturbing types of cancer that can affect either sex. Nanoparticles (NPs) of zein/sodium caseinate incorporating ibuprofen (IBU) and naringenin (NAR) have improved bioavailability and a high encapsulation efficiency (EE%). These nanoparticles are uniformly spherical. <i>In vitro</i>, cytotoxicity analysis on HepG2 cell lines, which are used to study human liver cancer, shows that encapsulated drugs (86.49% ± 1.90, and 78.52% ± 1.98 for NAR and IBU, respectively) have significantly lower IC<sub>50</sub> values than individual drugs or their combined free form. In addition, the combination indices of 0.623 and 0.155 for IBU and NAR, respectively, show that the two have joint beneficial effects. The scratch wound healing assay results also show that the free drugs and the engineered NPs have a more significant anti-migratory effect than the untreated cells. The designed nanoparticles also reduce angiogenesis and proliferation while inducing apoptosis, according to <i>in vitro</i> results. In conclusion, a new approach to treating liver cancer may lie in the nanoencapsulation of numerous drugs within nanoparticles.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"2703-2722"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2391653","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, liver cancer is one of the most disturbing types of cancer that can affect either sex. Nanoparticles (NPs) of zein/sodium caseinate incorporating ibuprofen (IBU) and naringenin (NAR) have improved bioavailability and a high encapsulation efficiency (EE%). These nanoparticles are uniformly spherical. In vitro, cytotoxicity analysis on HepG2 cell lines, which are used to study human liver cancer, shows that encapsulated drugs (86.49% ± 1.90, and 78.52% ± 1.98 for NAR and IBU, respectively) have significantly lower IC50 values than individual drugs or their combined free form. In addition, the combination indices of 0.623 and 0.155 for IBU and NAR, respectively, show that the two have joint beneficial effects. The scratch wound healing assay results also show that the free drugs and the engineered NPs have a more significant anti-migratory effect than the untreated cells. The designed nanoparticles also reduce angiogenesis and proliferation while inducing apoptosis, according to in vitro results. In conclusion, a new approach to treating liver cancer may lie in the nanoencapsulation of numerous drugs within nanoparticles.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.