Efflux of TolC protein to different antimicrobials can be replaced by other outer membrane proteins with similar β-barrel structures in extraintestinal pathogenic Escherichia coli.
IF 3.2 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Efflux of TolC protein to different antimicrobials can be replaced by other outer membrane proteins with similar β-barrel structures in extraintestinal pathogenic Escherichia coli.","authors":"Xue Bao, Chenglong Yang, Tian Li, Yanlin Wang, Ailian Cui, Xianrong Meng, Qi Huang, Shaowen Li","doi":"10.1093/jambio/lxae214","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>As a major efflux pump system in Gram-negative bacteria, AcrAB-TolC plays a key role in the transport of multiple drug substrates and is considered a potential target for the development of novel antimicrobials. Our previous study found that TolC inactivation compromised the resistance to different antimicrobials in porcine extraintestinal pathogenic Escherichia coli (ExPEC) strain PPECC042 (WT). This study was designed to investigate the functional substitution of TolC by other outer membrane proteins (OMPs) with similar β-barrel structures in pumping out different antimicrobials.</p><p><strong>Methods and results: </strong>In this study, we found that over-expression of several OMPs with similar β-barrel structures, OmpX, OmpC, OmpN, OmpW, and PhoE, in the ΔtolC strain restored the resistance to macrolides, quinolones, or tetracyclines to the level of WT strain. However, the introduction of any one of the five OMPs did not affect the resistance of the strains ΔacrA, ΔacrB, and ΔacrAΔtolC. Further study revealed that the efflux activity was significantly reduced in the ΔtolC strain, but not in the WT strain and the ΔtolC strains over-expressing various OMPs. Additionally, Nile red dye test and ciprofloxacin accumulation test confirmed that the lost efflux activity and drug accumulation in bacterial periplasm by TolC inactivation was restored by the over-expression of each OMP, depending on the presence of genes acrA and acrB.</p><p><strong>Conclusion: </strong>All five OMPs can replace the TolC protein to play the efflux role in pumping out the drugs from the periplasm to the extracellular space with the help of proteins AcrA and AcrB.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae214","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: As a major efflux pump system in Gram-negative bacteria, AcrAB-TolC plays a key role in the transport of multiple drug substrates and is considered a potential target for the development of novel antimicrobials. Our previous study found that TolC inactivation compromised the resistance to different antimicrobials in porcine extraintestinal pathogenic Escherichia coli (ExPEC) strain PPECC042 (WT). This study was designed to investigate the functional substitution of TolC by other outer membrane proteins (OMPs) with similar β-barrel structures in pumping out different antimicrobials.
Methods and results: In this study, we found that over-expression of several OMPs with similar β-barrel structures, OmpX, OmpC, OmpN, OmpW, and PhoE, in the ΔtolC strain restored the resistance to macrolides, quinolones, or tetracyclines to the level of WT strain. However, the introduction of any one of the five OMPs did not affect the resistance of the strains ΔacrA, ΔacrB, and ΔacrAΔtolC. Further study revealed that the efflux activity was significantly reduced in the ΔtolC strain, but not in the WT strain and the ΔtolC strains over-expressing various OMPs. Additionally, Nile red dye test and ciprofloxacin accumulation test confirmed that the lost efflux activity and drug accumulation in bacterial periplasm by TolC inactivation was restored by the over-expression of each OMP, depending on the presence of genes acrA and acrB.
Conclusion: All five OMPs can replace the TolC protein to play the efflux role in pumping out the drugs from the periplasm to the extracellular space with the help of proteins AcrA and AcrB.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.