Abdulrahman A Balhaddad, Faisal Alharamlah, Alhanoof Aldossary, Wejdan Almutairi, Turki Alshehri, Mary Anne S Melo, Afnan O Al-Zain, Eman H Ismail
{"title":"Impact of combining dental composite brushes with modeling resins on the color stability and topographic features of composites.","authors":"Abdulrahman A Balhaddad, Faisal Alharamlah, Alhanoof Aldossary, Wejdan Almutairi, Turki Alshehri, Mary Anne S Melo, Afnan O Al-Zain, Eman H Ismail","doi":"10.1177/22808000241272487","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the effect of using dental brushes with or without metacrylate-based modeling resins on long-term color stability and surface topographies of resin-based composites. This study examined the effects of two variables: (1) the type of brush used (Art brush, Micro-brush, or Mylar strip) and (2) the application of a modeling resin (applied or not applied). The specimens were artificially aged through 10,000 cycles of thermocycling and subsequently immersed in coffee for 30 days. Measurements of color and surface roughness were taken at baseline and after the aging, using a non-contact profilometer for surface roughness and a spectrophotometer for color. Data were analyzed using paired t-tests and one-way ANOVA. Resin-based composites smoothed with dental brushes or micro brushes without modeling resins exhibited lower color change (ΔE) than other groups. Paired t-tests revealed significant differences in average surface roughness (Ra) and valley depth (Rv) for each surfacing technique before and after aging (<i>p</i> ⩽ 0.01). The root means square average of the profile heights (Rq) significantly increased in the control and micro-brush groups (<i>p</i> ⩽ 0.01). In conclusion, the use of brushes in resin-based composites placement does not increase the susceptibility to staining. Instead, the inclusion of resin modeling contributes to discoloration over time.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000241272487","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the effect of using dental brushes with or without metacrylate-based modeling resins on long-term color stability and surface topographies of resin-based composites. This study examined the effects of two variables: (1) the type of brush used (Art brush, Micro-brush, or Mylar strip) and (2) the application of a modeling resin (applied or not applied). The specimens were artificially aged through 10,000 cycles of thermocycling and subsequently immersed in coffee for 30 days. Measurements of color and surface roughness were taken at baseline and after the aging, using a non-contact profilometer for surface roughness and a spectrophotometer for color. Data were analyzed using paired t-tests and one-way ANOVA. Resin-based composites smoothed with dental brushes or micro brushes without modeling resins exhibited lower color change (ΔE) than other groups. Paired t-tests revealed significant differences in average surface roughness (Ra) and valley depth (Rv) for each surfacing technique before and after aging (p ⩽ 0.01). The root means square average of the profile heights (Rq) significantly increased in the control and micro-brush groups (p ⩽ 0.01). In conclusion, the use of brushes in resin-based composites placement does not increase the susceptibility to staining. Instead, the inclusion of resin modeling contributes to discoloration over time.
期刊介绍:
The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials.
The areas covered by the journal will include:
• Biomaterials / Materials for biomedical applications
• Functional materials
• Hybrid and composite materials
• Soft materials
• Hydrogels
• Nanomaterials
• Gene delivery
• Nonodevices
• Metamaterials
• Active coatings
• Surface functionalization
• Tissue engineering
• Cell delivery/cell encapsulation systems
• 3D printing materials
• Material characterization
• Biomechanics