Rida Siddique, Faqir Muhammad, Muhammad Naeem Faisal, Bushra Akhtar, Ammara Saleem, Shaneel Kousar, Ali Sharif, Muhammad Saeed, Safwan Muhammad
{"title":"Gingerol nanoparticles attenuate complete Freund adjuvant-induced arthritis in rats via targeting the RANKL/OPG signaling pathway.","authors":"Rida Siddique, Faqir Muhammad, Muhammad Naeem Faisal, Bushra Akhtar, Ammara Saleem, Shaneel Kousar, Ali Sharif, Muhammad Saeed, Safwan Muhammad","doi":"10.1007/s10787-024-01537-5","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is characterized by inflammatory joint pathology leading to the degradation of articular bone and cartilage, primarily triggered by synovial inflammation, resulting in joint discomfort. The metacarpophalangeal and proximal interphalangeal joints are predominantly affected. Treatment typically involves a combination of biological and synthetic disease-modifying antirheumatic drugs (DAMARDs) alongside steroid therapy. The application of nanomedicine has been instrumental in enhancing treatment efficacy by facilitating controlled release of pharmacologically active compounds, thus augmenting bioavailability and enabling targeted drug delivery. Gingerol, a constituent of ginger, possesses multifaceted properties. including anti-inflammatory, anti-oxidant, antidiabetic, and antipyretic effects. In this study, gingerol-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), coated with chitosan, were administered orally to rats over a period of 21 days to address RA induced by complete Freund adjuvant (CFA). The rats were segregated into four experimental groups. Upon completion of the treatment regimen, blood samples were collected for the assessment of cyclooxygenase-2 (COX-2), RA factor, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Subsequent gene expression analysis was conducted to evaluate the levels of interleukin-4 (IL-4), interleukin-17a (IL-17a), IL-6, interferon-gamma (INF-γ), TNF-α, interleukin-1 beta (IL-1β), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL). Statistical analyses utilizing one-way ANOVA followed by Tukey tests were applied to the data. The gene expression profiling revealed significant disparities in mRNA levels of IL-1β, IL-6, IL-4, IL-17a, RANKL, INF-γ, and TNF-α between the CFA-induced arthritis group and the control group. Consequently, it was inferred that gingerol-loaded PLGA NPs coated with chitosan exhibited heightened therapeutic efficacy in addressing CFA-induced arthritis in rats.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":"3311-3326"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01537-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rheumatoid arthritis (RA) is characterized by inflammatory joint pathology leading to the degradation of articular bone and cartilage, primarily triggered by synovial inflammation, resulting in joint discomfort. The metacarpophalangeal and proximal interphalangeal joints are predominantly affected. Treatment typically involves a combination of biological and synthetic disease-modifying antirheumatic drugs (DAMARDs) alongside steroid therapy. The application of nanomedicine has been instrumental in enhancing treatment efficacy by facilitating controlled release of pharmacologically active compounds, thus augmenting bioavailability and enabling targeted drug delivery. Gingerol, a constituent of ginger, possesses multifaceted properties. including anti-inflammatory, anti-oxidant, antidiabetic, and antipyretic effects. In this study, gingerol-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), coated with chitosan, were administered orally to rats over a period of 21 days to address RA induced by complete Freund adjuvant (CFA). The rats were segregated into four experimental groups. Upon completion of the treatment regimen, blood samples were collected for the assessment of cyclooxygenase-2 (COX-2), RA factor, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Subsequent gene expression analysis was conducted to evaluate the levels of interleukin-4 (IL-4), interleukin-17a (IL-17a), IL-6, interferon-gamma (INF-γ), TNF-α, interleukin-1 beta (IL-1β), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL). Statistical analyses utilizing one-way ANOVA followed by Tukey tests were applied to the data. The gene expression profiling revealed significant disparities in mRNA levels of IL-1β, IL-6, IL-4, IL-17a, RANKL, INF-γ, and TNF-α between the CFA-induced arthritis group and the control group. Consequently, it was inferred that gingerol-loaded PLGA NPs coated with chitosan exhibited heightened therapeutic efficacy in addressing CFA-induced arthritis in rats.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]