Matheus Corteletti dos Santos, Daniel Sesana da Silva, Jóctan Pimentel Cordeiro, Lucas Furtado Domingos, Ezio Henrique da Silva Gomes, Breno Valentim Nogueira, Danilo Sales Bocalini, Ana Paula Lima Leopoldo, André Soares Leopoldo
{"title":"High-intensity interval training improves cardiomyocyte contractile function and myofilament sensitivity to intracellular Ca2+ in obese rats","authors":"Matheus Corteletti dos Santos, Daniel Sesana da Silva, Jóctan Pimentel Cordeiro, Lucas Furtado Domingos, Ezio Henrique da Silva Gomes, Breno Valentim Nogueira, Danilo Sales Bocalini, Ana Paula Lima Leopoldo, André Soares Leopoldo","doi":"10.1113/EP092015","DOIUrl":null,"url":null,"abstract":"<p>High-intensity interval training (HIIT) has shown significant results in addressing adiposity and risk factors associated with obesity. However, there are no studies that investigate the effects of HIIT on contractility and intracellular Ca<sup>2+</sup> handling. The purpose of this study was to explore the impact of HIIT on cardiomyocyte contractile function and intracellular Ca<sup>2+</sup> handling in rats in which obesity was induced by a saturated high-fat diet (HFD). Male Wistar rats were initially randomized into a standard diet and a HFD group. The experimental protocol spanned 23 weeks, comprising the induction and maintenance of obesity (15 weeks) followed by HIIT treatment (8 weeks). Performance was assessed using the maximum oxygen consumption test (<span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation>\n </semantics></math>). Evaluation encompassed cardiac, adipose and skeletal muscle histology, as well as contractility and intracellular Ca<sup>2+</sup> handling. HIIT resulted in a reduction in visceral area, an increase in <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>V</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mi>max</mi>\n </mrow>\n </msub>\n <annotation>${{\\dot{V}}_{{{{\\mathrm{O}}}_{\\mathrm{2}}}{\\mathrm{max}}}}$</annotation>\n </semantics></math>, and an augmentation of gastrocnemius fibre diameter in obese subjects. Additionally, HIIT led to a decrease in collagen fraction, an increase in percentage shortening, and a reduction in systolic Ca<sup>2+</sup>/percentage shortening and systolic Ca<sup>2+</sup>/maximum shortening rates. HIIT induces physiological cardiac remodelling, enhancing the contractile function of cardiomyocytes and improving myofilament sensitivity to Ca<sup>2+</sup> in the context of obesity. This approach not only enhances cardiorespiratory and physical performance but also reduces visceral area and prevents interstitial fibrosis.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":"109 10","pages":"1710-1727"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1113/EP092015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-intensity interval training (HIIT) has shown significant results in addressing adiposity and risk factors associated with obesity. However, there are no studies that investigate the effects of HIIT on contractility and intracellular Ca2+ handling. The purpose of this study was to explore the impact of HIIT on cardiomyocyte contractile function and intracellular Ca2+ handling in rats in which obesity was induced by a saturated high-fat diet (HFD). Male Wistar rats were initially randomized into a standard diet and a HFD group. The experimental protocol spanned 23 weeks, comprising the induction and maintenance of obesity (15 weeks) followed by HIIT treatment (8 weeks). Performance was assessed using the maximum oxygen consumption test (). Evaluation encompassed cardiac, adipose and skeletal muscle histology, as well as contractility and intracellular Ca2+ handling. HIIT resulted in a reduction in visceral area, an increase in , and an augmentation of gastrocnemius fibre diameter in obese subjects. Additionally, HIIT led to a decrease in collagen fraction, an increase in percentage shortening, and a reduction in systolic Ca2+/percentage shortening and systolic Ca2+/maximum shortening rates. HIIT induces physiological cardiac remodelling, enhancing the contractile function of cardiomyocytes and improving myofilament sensitivity to Ca2+ in the context of obesity. This approach not only enhances cardiorespiratory and physical performance but also reduces visceral area and prevents interstitial fibrosis.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.