Fixed parameters in the population pharmacokinetic modeling of valproic acid might not be suitable: external validation in Chinese adults with epilepsy or after neurosurgery.
{"title":"Fixed parameters in the population pharmacokinetic modeling of valproic acid might not be suitable: external validation in Chinese adults with epilepsy or after neurosurgery.","authors":"Ruoyun Wu, Kai Li, Zhigang Zhao, Shenghui Mei","doi":"10.1007/s00228-024-03746-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to assess the predictive performance of published valproic acid (VPA) population pharmacokinetic (PPK) models using an external data set in Chinese adults with epilepsy or after neurosurgery.</p><p><strong>Methods: </strong>A total of 384 concentrations from 290 Chinese adults with epilepsy or after neurosurgery were used for external validation. Data on published VPA PPK models were extracted from the literature. Prediction-based diagnostics (such as F20 and F30), simulation-based diagnostics, and Bayesian forecasting were used to evaluate the predictability of models.</p><p><strong>Results: </strong>The results of prediction-based diagnostics of all models were unsatisfactory. Models B, F, and H showed the best prediction performance in simulation-based diagnostics and Bayesian forecasting, demonstrating superior precision and accuracy. Bayesian forecasting demonstrated significant improvements in the model predictability.</p><p><strong>Conclusion: </strong>The published PPK models showed extensive variation in predictive performance for extrapolation among Chinese adults with epilepsy or after neurosurgery patients. Fixed parameters of Vd and Ka in the PPK modeling of VPA might be the reason for the unsatisfied predictive performance. Bayesian forecasting significantly improved model predictability and may help to individualize VPA dosing.</p>","PeriodicalId":11857,"journal":{"name":"European Journal of Clinical Pharmacology","volume":" ","pages":"1819-1828"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00228-024-03746-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aims to assess the predictive performance of published valproic acid (VPA) population pharmacokinetic (PPK) models using an external data set in Chinese adults with epilepsy or after neurosurgery.
Methods: A total of 384 concentrations from 290 Chinese adults with epilepsy or after neurosurgery were used for external validation. Data on published VPA PPK models were extracted from the literature. Prediction-based diagnostics (such as F20 and F30), simulation-based diagnostics, and Bayesian forecasting were used to evaluate the predictability of models.
Results: The results of prediction-based diagnostics of all models were unsatisfactory. Models B, F, and H showed the best prediction performance in simulation-based diagnostics and Bayesian forecasting, demonstrating superior precision and accuracy. Bayesian forecasting demonstrated significant improvements in the model predictability.
Conclusion: The published PPK models showed extensive variation in predictive performance for extrapolation among Chinese adults with epilepsy or after neurosurgery patients. Fixed parameters of Vd and Ka in the PPK modeling of VPA might be the reason for the unsatisfied predictive performance. Bayesian forecasting significantly improved model predictability and may help to individualize VPA dosing.
期刊介绍:
The European Journal of Clinical Pharmacology publishes original papers on all aspects of clinical pharmacology and drug therapy in humans. Manuscripts are welcomed on the following topics: therapeutic trials, pharmacokinetics/pharmacodynamics, pharmacogenetics, drug metabolism, adverse drug reactions, drug interactions, all aspects of drug development, development relating to teaching in clinical pharmacology, pharmacoepidemiology, and matters relating to the rational prescribing and safe use of drugs. Methodological contributions relevant to these topics are also welcomed.
Data from animal experiments are accepted only in the context of original data in man reported in the same paper. EJCP will only consider manuscripts describing the frequency of allelic variants in different populations if this information is linked to functional data or new interesting variants. Highly relevant differences in frequency with a major impact in drug therapy for the respective population may be submitted as a letter to the editor.
Straightforward phase I pharmacokinetic or pharmacodynamic studies as parts of new drug development will only be considered for publication if the paper involves
-a compound that is interesting and new in some basic or fundamental way, or
-methods that are original in some basic sense, or
-a highly unexpected outcome, or
-conclusions that are scientifically novel in some basic or fundamental sense.