{"title":"Durable photobioreactor antibiofouling coatings for microalgae cultivation by photoreactive poly(2,2,2-trifluoroethyl methacrylate).","authors":"Honghe Song, Yuheng Jiang, Caixiang Chen, Shumei Wen, Zhenzhen Zhou, Chenghu Yan, Wei Cong","doi":"10.1080/08927014.2024.2391000","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the durability of the photobioreactor antibiofouling surface for microalgal cultivation, a series of photoreactive poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) were successfully synthesized and used to modify ethylene-vinyl acetate (EVA) films by a surface coating and UV light grafting method. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy analysis (XPS) and fluorescence microscopy results indicated that PTFEMA were fixed successfully onto the EVA film surface through a covalent bond. During the microalgal adhesion assay, the number of EVA-PTFEMA film-adhered microalgae was 41.4% lower than that of the EVA film. Moreover, the number of microalgae attached to the EVA-PTFEMA film decreased by 61.7% after cleaning, while that of EVA film decreased by only 49.1%. It was found that the contact angle of EVA-PTFEMA film surface increased, and remained stable when immersed in acid and alkali solution for up to 90 days.HIGHLIGHTSDurable photobioreactor antibiofouling surfaces for microalgal cultivation were prepared successfully.The contact angle of antibiofouling coating surface remained stable in acid and base environment for 90 days.The attached microalgae on antibiofouling surface decreased 41.4% than those of unmodified surface.The attached microalgae on antibiofouling surface could be cleaned by 61.7% through changing the flow velocity of microalgal suspension.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2391000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the durability of the photobioreactor antibiofouling surface for microalgal cultivation, a series of photoreactive poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) were successfully synthesized and used to modify ethylene-vinyl acetate (EVA) films by a surface coating and UV light grafting method. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy analysis (XPS) and fluorescence microscopy results indicated that PTFEMA were fixed successfully onto the EVA film surface through a covalent bond. During the microalgal adhesion assay, the number of EVA-PTFEMA film-adhered microalgae was 41.4% lower than that of the EVA film. Moreover, the number of microalgae attached to the EVA-PTFEMA film decreased by 61.7% after cleaning, while that of EVA film decreased by only 49.1%. It was found that the contact angle of EVA-PTFEMA film surface increased, and remained stable when immersed in acid and alkali solution for up to 90 days.HIGHLIGHTSDurable photobioreactor antibiofouling surfaces for microalgal cultivation were prepared successfully.The contact angle of antibiofouling coating surface remained stable in acid and base environment for 90 days.The attached microalgae on antibiofouling surface decreased 41.4% than those of unmodified surface.The attached microalgae on antibiofouling surface could be cleaned by 61.7% through changing the flow velocity of microalgal suspension.