An electroporation cytometry system for long-term, live cell cycle analysis.

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS
Biomicrofluidics Pub Date : 2024-08-06 eCollection Date: 2024-07-01 DOI:10.1063/5.0204837
Thomas Nesmith, Christian Vieira, Darius G Rackus, Gagan D Gupta
{"title":"An electroporation cytometry system for long-term, live cell cycle analysis.","authors":"Thomas Nesmith, Christian Vieira, Darius G Rackus, Gagan D Gupta","doi":"10.1063/5.0204837","DOIUrl":null,"url":null,"abstract":"<p><p>Electric fields are used in biology to address a broad range of questions and through a variety of techniques, including electroporation, gene electrotransfer (GET), electrostimulation (ES), and electrochemotherapy. Each of these modalities requires specific conditions and has drastically different target outcomes on the cell. ES has demonstrated that non-pore forming electric fields alter cell cycle progression. However, pore forming electric fields such as with GET have not been as widely explored despite major clinical advancements. Additionally, the real-time visual analysis of electrical field effects on mammalian cell culture is currently lacking among most commercial systems. To facilitate investigations into these research areas, an electroporation cytometry system was developed including a custom chamber compatible with live cell imaging and exponential decay pulse generator for live cell analysis. The functionality of the system was demonstrated using a recombinant cell line using U-2 OS cells and FUCCI(CA)5 cell cycle reporter. The exposure of the cells to a 180 V pulse in both unsynchronized and synchronized populations revealed an effect on the cell cycle.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364459/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0204837","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Electric fields are used in biology to address a broad range of questions and through a variety of techniques, including electroporation, gene electrotransfer (GET), electrostimulation (ES), and electrochemotherapy. Each of these modalities requires specific conditions and has drastically different target outcomes on the cell. ES has demonstrated that non-pore forming electric fields alter cell cycle progression. However, pore forming electric fields such as with GET have not been as widely explored despite major clinical advancements. Additionally, the real-time visual analysis of electrical field effects on mammalian cell culture is currently lacking among most commercial systems. To facilitate investigations into these research areas, an electroporation cytometry system was developed including a custom chamber compatible with live cell imaging and exponential decay pulse generator for live cell analysis. The functionality of the system was demonstrated using a recombinant cell line using U-2 OS cells and FUCCI(CA)5 cell cycle reporter. The exposure of the cells to a 180 V pulse in both unsynchronized and synchronized populations revealed an effect on the cell cycle.

用于长期活细胞周期分析的电穿孔细胞测量系统。
电场在生物学中被广泛用于解决各种问题,并通过各种技术得以应用,包括电穿孔、基因电转移 (GET)、电刺激 (ES) 和电化学疗法。每种方法都需要特定的条件,对细胞的目标结果也大不相同。ES 已证明,非孔隙形成的电场会改变细胞周期的进展。然而,尽管在临床上取得了重大进展,形成孔隙的电场(如 GET)尚未得到广泛探索。此外,目前大多数商用系统都无法对电场对哺乳动物细胞培养的影响进行实时可视分析。为了促进这些研究领域的调查,我们开发了一种电穿孔细胞测量系统,包括一个与活细胞成像兼容的定制室和用于活细胞分析的指数衰减脉冲发生器。该系统的功能通过使用 U-2 OS 细胞和 FUCCI(CA)5 细胞周期报告因子的重组细胞系进行了验证。在非同步和同步细胞群中,将细胞暴露于 180 V 脉冲会对细胞周期产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信