Suppression of double-stranded RNA sensing in cancer: molecular mechanisms and therapeutic potential.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Addison A Young, Holly E Bohlin, Jackson R Pierce, Kyle A Cottrell
{"title":"Suppression of double-stranded RNA sensing in cancer: molecular mechanisms and therapeutic potential.","authors":"Addison A Young, Holly E Bohlin, Jackson R Pierce, Kyle A Cottrell","doi":"10.1042/BST20230727","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy has emerged as a therapeutic option for many cancers. For some tumors, immune checkpoint inhibitors show great efficacy in promoting anti-tumor immunity. However, not all tumors respond to immunotherapies. These tumors often exhibit reduced inflammation and are resistant to checkpoint inhibitors. Therapies that turn these 'cold' tumors 'hot' could improve the efficacy and applicability of checkpoint inhibitors, and in some cases may be sufficient on their own to promote anti-tumor immunity. One strategy to accomplish this goal is to activate innate immunity pathways within the tumor. Here we describe how this can be accomplished by activating double-stranded RNA (dsRNA) sensors. These sensors evolved to detect and respond to dsRNAs arising from viral infection but can also be activated by endogenous dsRNAs. A set of proteins, referred to as suppressors of dsRNA sensing, are responsible for preventing sensing 'self' dsRNA and activating innate immunity pathways. The mechanism of action of these suppressors falls into three categories: (1) Suppressors that affect mature RNAs through editing, degradation, restructuring, or binding. (2) Suppressors that affect RNA processing. (3) Suppressors that affect RNA expression. In this review we highlight suppressors that function through each mechanism, provide examples of the effects of disrupting those suppressors in cancer cell lines and tumors, and discuss the therapeutic potential of targeting these proteins and pathways.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2035-2045"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20230727","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy has emerged as a therapeutic option for many cancers. For some tumors, immune checkpoint inhibitors show great efficacy in promoting anti-tumor immunity. However, not all tumors respond to immunotherapies. These tumors often exhibit reduced inflammation and are resistant to checkpoint inhibitors. Therapies that turn these 'cold' tumors 'hot' could improve the efficacy and applicability of checkpoint inhibitors, and in some cases may be sufficient on their own to promote anti-tumor immunity. One strategy to accomplish this goal is to activate innate immunity pathways within the tumor. Here we describe how this can be accomplished by activating double-stranded RNA (dsRNA) sensors. These sensors evolved to detect and respond to dsRNAs arising from viral infection but can also be activated by endogenous dsRNAs. A set of proteins, referred to as suppressors of dsRNA sensing, are responsible for preventing sensing 'self' dsRNA and activating innate immunity pathways. The mechanism of action of these suppressors falls into three categories: (1) Suppressors that affect mature RNAs through editing, degradation, restructuring, or binding. (2) Suppressors that affect RNA processing. (3) Suppressors that affect RNA expression. In this review we highlight suppressors that function through each mechanism, provide examples of the effects of disrupting those suppressors in cancer cell lines and tumors, and discuss the therapeutic potential of targeting these proteins and pathways.

抑制癌症中的双链 RNA 感知:分子机制和治疗潜力。
免疫疗法已成为许多癌症的治疗选择。对于某些肿瘤,免疫检查点抑制剂在促进抗肿瘤免疫方面显示出巨大疗效。然而,并非所有肿瘤都对免疫疗法有反应。这些肿瘤通常会表现出炎症减轻,并对检查点抑制剂产生抗药性。让这些 "冷 "肿瘤变 "热 "的疗法可以提高检查点抑制剂的疗效和适用性,在某些情况下,这种疗法本身就足以促进抗肿瘤免疫。实现这一目标的策略之一是激活肿瘤内的先天免疫途径。在这里,我们描述了如何通过激活双链 RNA(dsRNA)传感器来实现这一目标。这些传感器的进化是为了检测和响应病毒感染产生的 dsRNA,但也可被内源性 dsRNA 激活。一组被称为dsRNA感应抑制因子的蛋白质负责防止感应 "自身 "dsRNA并激活先天免疫途径。这些抑制因子的作用机制可分为三类:(1)通过编辑、降解、重组或结合影响成熟 RNA 的抑制因子。(2)影响 RNA 加工的抑制因子。(3)影响 RNA 表达的抑制因子。在这篇综述中,我们将重点介绍通过每种机制发挥作用的抑制因子,举例说明破坏这些抑制因子对癌细胞系和肿瘤的影响,并讨论针对这些蛋白和途径的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信