{"title":"Exosomal miR-222-3p derived from dermal papilla cells inhibits melanogenesis in melanocytes by targeting SOX10 in rabbits.","authors":"Yang Chen, Tingting Lu, Yingying Dai, Yu Xue, Bohao Zhao, Xinsheng Wu","doi":"10.5713/ab.24.0182","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Dermal papilla cells (DPCs) play a pivotal role in hair follicle development and can modulate melanogenesis in melanocytes (MCs) through their microenvironment. Our previous studies have demonstrated that the levels of exosomal miR-222-3p derived from DPCs of white Rex rabbits are significantly higher than those of black Rex rabbits. However, the specific role and underlying molecular mechanisms of exosomal miR-222-3p in melanogenesis remain elusive.</p><p><strong>Methods: </strong>DPCs and MCs were isolated from hair follicles of Rex rabbits and identified using western blotting (WB) and immunofluorescent staining. Exosomes derived from DPCs (DPCs-exos) were characterized using nanoparticle tracking analysis, transmission electron microscopy, and WB. To investigate cell-cell crosstalk mediated by exosomes, MCs were co-cultured with CM-Dil-labeled DPCs-exos. The expression of miR-222-3p in skin tissue and exosomes was quantitatively assessed using quantitative real-time polymerase chain reaction. The transmission of DPCs-secreted exosomal miR-222-3p to MCs was demonstrated using Cy3-labeled miR-222-3p in conjunction with transwell assays. The impact of miR-222-3p on melanin synthesis was evaluated using the NaOH method, cell counting kit-8, and annexin V-fluorescein isothiocyanate/propidium iodide assays. Sex determining region Y-box 10 (SOX10), a potential target gene regulated by miR-222-3p, was validated using a dual-luciferase reporter assay, site-specific mutation, and WB.</p><p><strong>Results: </strong>Increased levels of miR-222-3p were observed in the skin and DPCs-exos of white Rex rabbits compared to those of black Rex rabbits. Effective internalization of CM-Dillabeled DPCs-exos by MCs was observed. Furthermore, exosomal miR-222-3p derived from DPCs was transferred to MCs. Functionally, miR-222-3p significantly inhibited MCs proliferation, induced apoptosis and inhibited melanin synthesis. SOX10 was confirmed as a direct target of miR-222-3p in this regulatory cascade.</p><p><strong>Conclusion: </strong>The findings demonstrate that exosomal miR-222-3p, derived from DPCs, suppresses melanogenesis in MCs by targeting SOX10, thus unveiling a novel mechanism of exosome involvement in melanogenesis.</p>","PeriodicalId":7825,"journal":{"name":"Animal Bioscience","volume":" ","pages":"236-246"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725748/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Bioscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5713/ab.24.0182","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Dermal papilla cells (DPCs) play a pivotal role in hair follicle development and can modulate melanogenesis in melanocytes (MCs) through their microenvironment. Our previous studies have demonstrated that the levels of exosomal miR-222-3p derived from DPCs of white Rex rabbits are significantly higher than those of black Rex rabbits. However, the specific role and underlying molecular mechanisms of exosomal miR-222-3p in melanogenesis remain elusive.
Methods: DPCs and MCs were isolated from hair follicles of Rex rabbits and identified using western blotting (WB) and immunofluorescent staining. Exosomes derived from DPCs (DPCs-exos) were characterized using nanoparticle tracking analysis, transmission electron microscopy, and WB. To investigate cell-cell crosstalk mediated by exosomes, MCs were co-cultured with CM-Dil-labeled DPCs-exos. The expression of miR-222-3p in skin tissue and exosomes was quantitatively assessed using quantitative real-time polymerase chain reaction. The transmission of DPCs-secreted exosomal miR-222-3p to MCs was demonstrated using Cy3-labeled miR-222-3p in conjunction with transwell assays. The impact of miR-222-3p on melanin synthesis was evaluated using the NaOH method, cell counting kit-8, and annexin V-fluorescein isothiocyanate/propidium iodide assays. Sex determining region Y-box 10 (SOX10), a potential target gene regulated by miR-222-3p, was validated using a dual-luciferase reporter assay, site-specific mutation, and WB.
Results: Increased levels of miR-222-3p were observed in the skin and DPCs-exos of white Rex rabbits compared to those of black Rex rabbits. Effective internalization of CM-Dillabeled DPCs-exos by MCs was observed. Furthermore, exosomal miR-222-3p derived from DPCs was transferred to MCs. Functionally, miR-222-3p significantly inhibited MCs proliferation, induced apoptosis and inhibited melanin synthesis. SOX10 was confirmed as a direct target of miR-222-3p in this regulatory cascade.
Conclusion: The findings demonstrate that exosomal miR-222-3p, derived from DPCs, suppresses melanogenesis in MCs by targeting SOX10, thus unveiling a novel mechanism of exosome involvement in melanogenesis.