Combination model for freshness prediction of pork using VIS/NIR hyperspectral imaging with chemometrics.

IF 2.4 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animal Bioscience Pub Date : 2025-01-01 Epub Date: 2024-08-26 DOI:10.5713/ab.24.0255
Minwoo Choi, Hye-Jin Kim, Azfar Ismail, Hyun-Jun Kim, Heesang Hong, Ghiseok Kim, Cheorun Jo
{"title":"Combination model for freshness prediction of pork using VIS/NIR hyperspectral imaging with chemometrics.","authors":"Minwoo Choi, Hye-Jin Kim, Azfar Ismail, Hyun-Jun Kim, Heesang Hong, Ghiseok Kim, Cheorun Jo","doi":"10.5713/ab.24.0255","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop an enhanced model for predicting pork freshness by integrating hyperspectral imaging (HSI) and chemometric analysis.</p><p><strong>Methods: </strong>A total of 30 Longissimus thoracis samples from three sows were stored under vacuum conditions at 4°C±2°C for 27 days to acquire data. The freshness prediction model for pork loin employed partial least squares regression (PLSR) with Monte Carlo data augmentation. Total bacterial count (TBC) and volatile basic nitrogen (VBN), which exhibited increases correlating with metabolite changes during storage, were designated as freshness indicators. Metabolic contents of the sample were quantified using nuclear magnetic resonance.</p><p><strong>Results: </strong>A total of 64 metabolites were identified, with 34 and 35 showing high correlations with TBC and VBN, respectively. Lysine and malate for TBC (R2 = 0.886) and methionine and niacinamide for VBN (R2 = 0.909) were identified as the main metabolites in each indicator by Model 1. Model 2 predicted main metabolites using HSI spectral data. Model 3, which predicted freshness indicators with HSI spectral data, demonstrated high prediction coefficients; TBC R2p = 0.7220 and VBN R2p = 0.8392. Furthermore, the combination model (Model 4), utilizing HSI spectral data and predicted metabolites from Model 2 to predict freshness indicators, improved the prediction coefficients compared to Model 3; TBC R2p = 0.7583 and VBN R2p = 0.8441.</p><p><strong>Conclusion: </strong>Combining HSI spectral data with metabolites correlated to the meat freshness may elucidate why certain HSI spectra indicate meat freshness and prove to be more effective in predicting the freshness state of pork loin compared to using only HSI spectral data.</p>","PeriodicalId":7825,"journal":{"name":"Animal Bioscience","volume":" ","pages":"142-156"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Bioscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5713/ab.24.0255","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to develop an enhanced model for predicting pork freshness by integrating hyperspectral imaging (HSI) and chemometric analysis.

Methods: A total of 30 Longissimus thoracis samples from three sows were stored under vacuum conditions at 4°C±2°C for 27 days to acquire data. The freshness prediction model for pork loin employed partial least squares regression (PLSR) with Monte Carlo data augmentation. Total bacterial count (TBC) and volatile basic nitrogen (VBN), which exhibited increases correlating with metabolite changes during storage, were designated as freshness indicators. Metabolic contents of the sample were quantified using nuclear magnetic resonance.

Results: A total of 64 metabolites were identified, with 34 and 35 showing high correlations with TBC and VBN, respectively. Lysine and malate for TBC (R2 = 0.886) and methionine and niacinamide for VBN (R2 = 0.909) were identified as the main metabolites in each indicator by Model 1. Model 2 predicted main metabolites using HSI spectral data. Model 3, which predicted freshness indicators with HSI spectral data, demonstrated high prediction coefficients; TBC R2p = 0.7220 and VBN R2p = 0.8392. Furthermore, the combination model (Model 4), utilizing HSI spectral data and predicted metabolites from Model 2 to predict freshness indicators, improved the prediction coefficients compared to Model 3; TBC R2p = 0.7583 and VBN R2p = 0.8441.

Conclusion: Combining HSI spectral data with metabolites correlated to the meat freshness may elucidate why certain HSI spectra indicate meat freshness and prove to be more effective in predicting the freshness state of pork loin compared to using only HSI spectral data.

利用 VIS/NIR 高光谱成像与化学计量学相结合的猪肉新鲜度预测模型。
研究目的本研究旨在通过整合高光谱成像和化学计量分析,开发一种预测猪肉新鲜度的增强模型:方法:在 4 ± 2℃的真空条件下,将三头母猪的 30 份胸长肌样品储存 27 天,以获取数据。猪里脊肉的新鲜度预测模型采用了蒙特卡洛数据增强的偏最小二乘法回归(PLSR)。细菌总数(TBC)和挥发性碱基氮(VBN)的增加与贮藏期间代谢物的变化相关,因此被指定为新鲜度指标。利用核磁共振对样品中的代谢物含量进行了量化:结果:共鉴定出 64 种代谢物,其中 34 种和 35 种分别与 TBC 和 VBN 高度相关。模型 1 确定了 TBC 的赖氨酸和苹果酸盐(R2 = 0.886)以及 VBN 的蛋氨酸和烟酰胺(R2 = 0.909)为各指标的主要代谢物。模型 2 利用 HSI 光谱数据预测主要代谢物。模型 3 利用 HSI 光谱数据预测新鲜度指标,预测系数较高;TBC R2p = 0.7220,VBN R2p = 0.8392。此外,与模型 3 相比,利用 HSI 光谱数据和模型 2 预测的代谢物来预测新鲜度指标的组合模型(模型 4)提高了预测系数;TBC R2p = 0.7583,VBN R2p = 0.8441:将 HSI 光谱数据与与肉类新鲜度相关的代谢物相结合,可以阐明某些 HSI 光谱指示肉类新鲜度的原因,并且与仅使用 HSI 光谱数据相比,在预测猪里脊肉的新鲜度状态方面更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Animal Bioscience
Animal Bioscience AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
5.00
自引率
0.00%
发文量
223
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信