ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI:10.1080/19768354.2024.2393811
Minji Kim, Kiseok Han, Gyuho Choi, Sanghyun Ahn, Jung-Soo Suh, Tae-Jin Kim
{"title":"ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity.","authors":"Minji Kim, Kiseok Han, Gyuho Choi, Sanghyun Ahn, Jung-Soo Suh, Tae-Jin Kim","doi":"10.1080/19768354.2024.2393811","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium ions (Ca<sup>2+</sup>) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca<sup>2+</sup> signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptible to modulation by various factors, including changes in the extracellular environment, which leads to mechanical alterations. However, the effect of extracellular matrix (ECM) stiffness variations on intracellular Ca<sup>2+</sup> signaling remains underexplored. In this study, we aimed to elucidate the mechanisms of Ca<sup>2+</sup> regulation through the mitochondria, which are crucial to Ca<sup>2+</sup> homeostasis. We investigated how Ca<sup>2+</sup> regulatory mechanisms adapt to different levels of ECM stiffness by simultaneously imaging the mitochondria and endoplasmic reticulum (ER) in live cells using genetically encoded biosensors. Our findings revealed that the uptake of mitochondrial Ca<sup>2+</sup> through Voltage-Dependent Anion Channel 1 (VDAC1), facilitated by intracellular tubulin, is influenced by ECM stiffness. Unraveling these Ca<sup>2+</sup> regulatory mechanisms under various conditions offers a novel perspective for advancing biomedical studies involving Ca<sup>2+</sup> signaling.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19768354.2024.2393811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium ions (Ca2+) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca2+ signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptible to modulation by various factors, including changes in the extracellular environment, which leads to mechanical alterations. However, the effect of extracellular matrix (ECM) stiffness variations on intracellular Ca2+ signaling remains underexplored. In this study, we aimed to elucidate the mechanisms of Ca2+ regulation through the mitochondria, which are crucial to Ca2+ homeostasis. We investigated how Ca2+ regulatory mechanisms adapt to different levels of ECM stiffness by simultaneously imaging the mitochondria and endoplasmic reticulum (ER) in live cells using genetically encoded biosensors. Our findings revealed that the uptake of mitochondrial Ca2+ through Voltage-Dependent Anion Channel 1 (VDAC1), facilitated by intracellular tubulin, is influenced by ECM stiffness. Unraveling these Ca2+ regulatory mechanisms under various conditions offers a novel perspective for advancing biomedical studies involving Ca2+ signaling.

ECM 硬度通过微管蛋白和 VDAC1 的活性调节线粒体的钙离子流入。
钙离子(Ca2+)在调节正常细胞和癌细胞的多种细胞功能(包括新陈代谢和生长)方面发挥着关键作用。因此,Ca2+ 信号是细胞命运的重要决定因素,影响着细胞的存活和死亡。这些细胞内信号易受各种因素的影响,包括细胞外环境的变化,从而导致机械性改变。然而,细胞外基质(ECM)硬度变化对细胞内 Ca2+ 信号传导的影响仍未得到充分探索。在本研究中,我们旨在阐明通过线粒体调节 Ca2+ 的机制,线粒体对 Ca2+ 平衡至关重要。我们利用基因编码的生物传感器对活细胞中的线粒体和内质网(ER)同时成像,研究了 Ca2+ 调节机制如何适应不同水平的 ECM 硬度。我们的研究结果表明,线粒体通过电压依赖性阴离子通道 1 (VDAC1) 吸收 Ca2+ 的过程受到 ECM 硬度的影响。在各种条件下揭示这些 Ca2+ 调节机制为推进涉及 Ca2+ 信号转导的生物医学研究提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信