Substance Use and Addiction.

Q3 Neuroscience
Keionna Newton, Lindsay De Biase
{"title":"Substance Use and Addiction.","authors":"Keionna Newton, Lindsay De Biase","doi":"10.1007/978-3-031-55529-9_19","DOIUrl":null,"url":null,"abstract":"<p><p>Efforts to reveal the molecular, cellular, and circuit mechanisms of addiction have largely focused on neurons. Yet accumulating data regarding the ability of glial cells to impact synaptic function, circuit activity, and behavior demands that we explore how these nonneuronal cells contribute to substance use disorders and addiction. Important work has shown that glial cells, including microglia, exhibit changes in phenotype following exposure to drugs of abuse and that modification of glial responses can impact behaviors related to drug seeking and drug taking. While these are critical first steps to understanding how microglia can impact addiction, there are still substantial gaps in knowledge that need to be addressed. This chapter reviews some of the key studies that have shown how microglia are affected by and can contribute to addiction. It also discusses areas where more knowledge is urgently needed to reveal new therapeutic and preventative approaches.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-55529-9_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts to reveal the molecular, cellular, and circuit mechanisms of addiction have largely focused on neurons. Yet accumulating data regarding the ability of glial cells to impact synaptic function, circuit activity, and behavior demands that we explore how these nonneuronal cells contribute to substance use disorders and addiction. Important work has shown that glial cells, including microglia, exhibit changes in phenotype following exposure to drugs of abuse and that modification of glial responses can impact behaviors related to drug seeking and drug taking. While these are critical first steps to understanding how microglia can impact addiction, there are still substantial gaps in knowledge that need to be addressed. This chapter reviews some of the key studies that have shown how microglia are affected by and can contribute to addiction. It also discusses areas where more knowledge is urgently needed to reveal new therapeutic and preventative approaches.

药物使用与成瘾。
揭示成瘾的分子、细胞和回路机制的工作主要集中在神经元上。然而,有关神经胶质细胞影响突触功能、回路活动和行为的能力的数据不断积累,要求我们探索这些非神经元细胞如何导致药物使用障碍和成瘾。重要的研究表明,包括小胶质细胞在内的神经胶质细胞在暴露于滥用药物后会表现出表型变化,而神经胶质细胞反应的改变会影响与药物寻求和服用相关的行为。虽然这些研究为了解小胶质细胞如何影响成瘾迈出了关键的第一步,但仍有大量知识空白需要填补。本章回顾了一些显示小胶质细胞如何受成瘾影响并导致成瘾的重要研究。它还讨论了急需更多知识来揭示新的治疗和预防方法的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信