Andy Lee, Benjamin N Daniels, William Hemstrom, Cataixa López, Yuki Kagaya, Daisuke Kihara, Jean M Davidson, Robert J Toonen, Crow White, Mark R Christie
{"title":"Genetic adaptation despite high gene flow in a range-expanding population.","authors":"Andy Lee, Benjamin N Daniels, William Hemstrom, Cataixa López, Yuki Kagaya, Daisuke Kihara, Jean M Davidson, Robert J Toonen, Crow White, Mark R Christie","doi":"10.1111/mec.17511","DOIUrl":null,"url":null,"abstract":"<p><p>Signals of natural selection can be quickly eroded in high gene flow systems, curtailing efforts to understand how and when genetic adaptation occurs in the ocean. This long-standing, unresolved topic in ecology and evolution has renewed importance because changing environmental conditions are driving range expansions that may necessitate rapid evolutionary responses. One example occurs in Kellet's whelk (Kelletia kelletii), a common subtidal gastropod with an ~40- to 60-day pelagic larval duration that expanded their biogeographic range northwards in the 1970s by over 300 km. To test for genetic adaptation, we performed a series of experimental crosses with Kellet's whelk adults collected from their historical (HxH) and recently expanded range (ExE), and conducted RNA-Seq on offspring that we reared in a common garden environment. We identified 2770 differentially expressed genes (DEGs) between 54 offspring samples with either only historical range (HxH offspring) or expanded range (ExE offspring) ancestry. Using SNPs called directly from the DEGs, we assigned samples of known origin back to their range of origin with unprecedented accuracy for a marine species (92.6% and 94.5% for HxH and ExE offspring, respectively). The SNP with the highest predictive importance occurred on triosephosphate isomerase (TPI), an essential metabolic enzyme involved in cold stress response. TPI was significantly upregulated and contained a non-synonymous mutation in the expanded range. Our findings pave the way for accurately identifying patterns of dispersal, gene flow and population connectivity in the ocean by demonstrating that experimental transcriptomics can reveal mechanisms for how marine organisms respond to changing environmental conditions.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17511"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17511","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Signals of natural selection can be quickly eroded in high gene flow systems, curtailing efforts to understand how and when genetic adaptation occurs in the ocean. This long-standing, unresolved topic in ecology and evolution has renewed importance because changing environmental conditions are driving range expansions that may necessitate rapid evolutionary responses. One example occurs in Kellet's whelk (Kelletia kelletii), a common subtidal gastropod with an ~40- to 60-day pelagic larval duration that expanded their biogeographic range northwards in the 1970s by over 300 km. To test for genetic adaptation, we performed a series of experimental crosses with Kellet's whelk adults collected from their historical (HxH) and recently expanded range (ExE), and conducted RNA-Seq on offspring that we reared in a common garden environment. We identified 2770 differentially expressed genes (DEGs) between 54 offspring samples with either only historical range (HxH offspring) or expanded range (ExE offspring) ancestry. Using SNPs called directly from the DEGs, we assigned samples of known origin back to their range of origin with unprecedented accuracy for a marine species (92.6% and 94.5% for HxH and ExE offspring, respectively). The SNP with the highest predictive importance occurred on triosephosphate isomerase (TPI), an essential metabolic enzyme involved in cold stress response. TPI was significantly upregulated and contained a non-synonymous mutation in the expanded range. Our findings pave the way for accurately identifying patterns of dispersal, gene flow and population connectivity in the ocean by demonstrating that experimental transcriptomics can reveal mechanisms for how marine organisms respond to changing environmental conditions.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms