{"title":"Gelada genomes highlight events of gene flow, hybridisation and local adaptation that track past climatic changes","authors":"Matteo Caldon, Giacomo Mutti, Alessandro Mondanaro, Hiroo Imai, Takayoshi Shotake, Gonzalo Oteo Garcia, Gurja Belay, Jordi Morata, Jean-Rémi Trotta, Francesco Montinaro, Spartaco Gippoliti, Cristian Capelli","doi":"10.1111/mec.17514","DOIUrl":null,"url":null,"abstract":"<p><i>Theropithecus gelada</i>, the last surviving species of this genus, occupy a unique and highly specialised ecological niche in the Ethiopian highlands. A subdivision into three geographically defined populations (Northern, Central and Southern) has been tentatively proposed for this species on the basis of genetic analyses, but genomic data have been investigated only for two of these groups (Northern and Central). Here we combined newly generated whole genome sequences of individuals sampled from the population living south of the East Africa Great Rift Valley with available data from the other two gelada populations to reconstruct the evolutionary history of the species. Integrating genomic and paleoclimatic data we found that gene-flow across populations and with <i>Papio</i> species tracked past climate changes. The isolation and climatic conditions experienced by Southern geladas during the Holocene shaped local diversity and generated diet-related genomic signatures.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17514","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17514","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Theropithecus gelada, the last surviving species of this genus, occupy a unique and highly specialised ecological niche in the Ethiopian highlands. A subdivision into three geographically defined populations (Northern, Central and Southern) has been tentatively proposed for this species on the basis of genetic analyses, but genomic data have been investigated only for two of these groups (Northern and Central). Here we combined newly generated whole genome sequences of individuals sampled from the population living south of the East Africa Great Rift Valley with available data from the other two gelada populations to reconstruct the evolutionary history of the species. Integrating genomic and paleoclimatic data we found that gene-flow across populations and with Papio species tracked past climate changes. The isolation and climatic conditions experienced by Southern geladas during the Holocene shaped local diversity and generated diet-related genomic signatures.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms