Human phase-I metabolism of three synthetic cannabinoids bearing a cumyl moiety and a cyclobutyl methyl or norbornyl methyl tail: Cumyl-CBMEGACLONE, Cumyl-NBMEGACLONE, and Cumyl-NBMINACA.

IF 2.6 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Arianna Giorgetti, Pietro Brunetti, Belal Haschimi, Benedikt Pulver, Jennifer Paola Pascali, Jan Riedel, Volker Auwärter
{"title":"Human phase-I metabolism of three synthetic cannabinoids bearing a cumyl moiety and a cyclobutyl methyl or norbornyl methyl tail: Cumyl-CBMEGACLONE, Cumyl-NBMEGACLONE, and Cumyl-NBMINACA.","authors":"Arianna Giorgetti, Pietro Brunetti, Belal Haschimi, Benedikt Pulver, Jennifer Paola Pascali, Jan Riedel, Volker Auwärter","doi":"10.1002/dta.3791","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic cannabinoid receptor agonists (SCRAs) continue to show high prevalence on the new psychoactive substances drug market. Around 2019-2020, new SCRAs bearing a cumyl moiety emerged: Cumyl-CBMEGACLONE and Cumyl-NBMEGACLONE, carrying a cyclobutyl methyl (CBM) and a norbornyl methyl moiety (NBM) attached to the γ-carbolinone core. These were followed by Cumyl-NBMINACA, the indazole carboxamide analog of Cumyl-NBMEGACLONE. The study aimed at evaluating the human phase-I metabolism of these compounds and at identifying suitable urinary markers to prove their consumption. After enzymatic hydrolysis, 14 authentic urine samples (eight for Cumyl-CBMEGACLONE, four for Cumyl-NBMEGACLONE, and two for Cumyl-NBMINACA) were analyzed by liquid chromatography-quadrupole time-of-flight mass spectrometry. Results were compared with in vitro metabolites generated by pooled human liver microsomes incubation. Fifteen human phase-I metabolites were identified for Cumyl-CBMEGACLONE, nine for Cumyl-NBMEGACLONE, and thirteen for Cumyl-NBMINACA. The main in vivo metabolites were built by monohydroxylation, dihydroxylation, or trihydroxylation. The following urinary biomarkers are suggested for detecting the consumption of the investigated SCRAs: products of monohydroxylation at the CBM and at the core for Cumyl-CBMEGACLONE; two products of monohydroxylation at the norbonyl methyl tail for Cumyl-NBMEGACLONE; and metabolites built by dihydroxylation at the NBM substructure and by an additional hydroxylation at the cumyl moiety for Cumyl-NBMINACA.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3791","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic cannabinoid receptor agonists (SCRAs) continue to show high prevalence on the new psychoactive substances drug market. Around 2019-2020, new SCRAs bearing a cumyl moiety emerged: Cumyl-CBMEGACLONE and Cumyl-NBMEGACLONE, carrying a cyclobutyl methyl (CBM) and a norbornyl methyl moiety (NBM) attached to the γ-carbolinone core. These were followed by Cumyl-NBMINACA, the indazole carboxamide analog of Cumyl-NBMEGACLONE. The study aimed at evaluating the human phase-I metabolism of these compounds and at identifying suitable urinary markers to prove their consumption. After enzymatic hydrolysis, 14 authentic urine samples (eight for Cumyl-CBMEGACLONE, four for Cumyl-NBMEGACLONE, and two for Cumyl-NBMINACA) were analyzed by liquid chromatography-quadrupole time-of-flight mass spectrometry. Results were compared with in vitro metabolites generated by pooled human liver microsomes incubation. Fifteen human phase-I metabolites were identified for Cumyl-CBMEGACLONE, nine for Cumyl-NBMEGACLONE, and thirteen for Cumyl-NBMINACA. The main in vivo metabolites were built by monohydroxylation, dihydroxylation, or trihydroxylation. The following urinary biomarkers are suggested for detecting the consumption of the investigated SCRAs: products of monohydroxylation at the CBM and at the core for Cumyl-CBMEGACLONE; two products of monohydroxylation at the norbonyl methyl tail for Cumyl-NBMEGACLONE; and metabolites built by dihydroxylation at the NBM substructure and by an additional hydroxylation at the cumyl moiety for Cumyl-NBMINACA.

含有积基分子和环丁基甲基或降冰片基甲基尾部的三种合成大麻素的人体第一阶段代谢:Cumyl-CBMEGACLONE、Cumyl-NBMEGACLONE 和 Cumyl-NBMINACA。
合成大麻素受体激动剂(SCRAs)在新精神活性物质药物市场上继续呈现高流行率。2019-2020 年前后,出现了含有积酰分子的新型 SCRAs:Cumyl-CBMEGACLONE 和 Cumyl-NBMEGACLONE,带有连接到 γ-咔唑啉酮核心的环丁基甲基(CBM)和降冰片甲基(NBM)。随后是 Cumyl-NBMINACA(Cumyl-NBMEGACLONE 的吲唑羧酰胺类似物)。研究的目的是评估这些化合物在人体中的第一阶段代谢情况,并确定合适的尿液标志物来证明这些化合物的消耗量。酶水解后,14 份真实尿液样本(8 份为 Cumyl-CBMEGACLONE,4 份为 Cumyl-NBMEGACLONE,2 份为 Cumyl-NBMINACA)通过液相色谱-四极杆飞行时间质谱法进行了分析。分析结果与人类肝脏微粒体体外培养产生的代谢物进行了比较。结果发现,Cumyl-CBMEGACLONE 和 Cumyl-NBMEGACLONE 分别含有 15 种和 9 种人体 I 期代谢物,Cumyl-NBMINACA 含有 13 种代谢物。主要的体内代谢物是通过单羟化、二羟化或三羟化形成的。建议使用以下尿液生物标志物来检测所研究的 SCRAs 的消耗情况:Cumyl-CBMEGACLONE 在 CBM 和核心处的单羟基化产物;Cumyl-NBMEGACLONE 在羰基甲基尾部的两种单羟基化产物;以及 Cumyl-NBMINACA 在 NBM 子结构处的二羟基化和在积基处的额外羟基化产生的代谢物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Testing and Analysis
Drug Testing and Analysis BIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
5.90
自引率
24.10%
发文量
191
审稿时长
2.3 months
期刊介绍: As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances. In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds). Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信