Spiral-Concave Prussian Blue Crystals with Rich Steps: Growth Mechanism and Coordination Regulation

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Guangxun Zhang, Yong Li, Dr. Guangyu Du, Jingqi Lu, Qiujing Wang, Ke Wu, Dr. Songtao Zhang, Dr. Han-Yi Chen, Prof. Yizhou Zhang, Prof. Huai-Guo Xue, Dr. Mohsen Shakouri, Prof. Zheng Liu, Prof. Huan Pang
{"title":"Spiral-Concave Prussian Blue Crystals with Rich Steps: Growth Mechanism and Coordination Regulation","authors":"Dr. Guangxun Zhang,&nbsp;Yong Li,&nbsp;Dr. Guangyu Du,&nbsp;Jingqi Lu,&nbsp;Qiujing Wang,&nbsp;Ke Wu,&nbsp;Dr. Songtao Zhang,&nbsp;Dr. Han-Yi Chen,&nbsp;Prof. Yizhou Zhang,&nbsp;Prof. Huai-Guo Xue,&nbsp;Dr. Mohsen Shakouri,&nbsp;Prof. Zheng Liu,&nbsp;Prof. Huan Pang","doi":"10.1002/anie.202414650","DOIUrl":null,"url":null,"abstract":"<p>Investigating the formation and transformation mechanisms of spiral-concave crystals holds significant potential for advancing innovative material design and comprehension. We examined the kinetics-controlled nucleation and growth mechanisms of Prussian Blue crystals with spiral concave structures, and constructed a detailed crystal growth phase diagram. The spiral-concave hexacyanoferrate (SC-HCF) crystals, characterized by high-density surface steps and a low stress-strain architecture, exhibit enhanced activity due to their facile interaction with reactants. Notably, the coordination environment of SC-HCF can be precisely modulated by the introduction of diverse metals. Utilizing X-ray absorption fine structure spectroscopy and in situ ultraviolet-visible spectroscopy, we elucidated the formation mechanism of SC-HCF to Co-HCF facilitated by oriented adsorption-ion exchange (OA-IE) process. Both experimental data, and density functional theory confirm that Co-HCF possesses an optimized energy band structure, capable of adjusting the local electronic environment and enhancing the performance of the oxygen evolution reaction. This work not only elucidates the formation mechanism and coordination regulation for rich steps HCF, but also offers a novel perspective for constructing nanocrystals with intricate spiral-concave structures.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 2","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414650","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the formation and transformation mechanisms of spiral-concave crystals holds significant potential for advancing innovative material design and comprehension. We examined the kinetics-controlled nucleation and growth mechanisms of Prussian Blue crystals with spiral concave structures, and constructed a detailed crystal growth phase diagram. The spiral-concave hexacyanoferrate (SC-HCF) crystals, characterized by high-density surface steps and a low stress-strain architecture, exhibit enhanced activity due to their facile interaction with reactants. Notably, the coordination environment of SC-HCF can be precisely modulated by the introduction of diverse metals. Utilizing X-ray absorption fine structure spectroscopy and in situ ultraviolet-visible spectroscopy, we elucidated the formation mechanism of SC-HCF to Co-HCF facilitated by oriented adsorption-ion exchange (OA-IE) process. Both experimental data, and density functional theory confirm that Co-HCF possesses an optimized energy band structure, capable of adjusting the local electronic environment and enhancing the performance of the oxygen evolution reaction. This work not only elucidates the formation mechanism and coordination regulation for rich steps HCF, but also offers a novel perspective for constructing nanocrystals with intricate spiral-concave structures.

Abstract Image

具有丰富阶梯的螺旋凹面普鲁士蓝晶体:生长机制与配位调节。
研究螺旋凹面晶体的形成和转化机制对于推动创新材料的设计和理解具有重大潜力。我们研究了具有螺旋凹面结构的普鲁士蓝晶体的动力学控制成核和生长机制,并构建了详细的晶体生长相图。螺旋凹面六氰基铁酸酯(SC-HCF)晶体以高密度表面阶梯和低应力应变结构为特征,由于易于与反应物相互作用,因而具有更高的活性。值得注意的是,SC-HCF 的配位环境可以通过引入不同的金属进行精确调节。利用 X 射线吸收精细结构光谱和原位紫外可见光谱,我们阐明了 SC-HCF 在定向吸附-离子交换(OA-IE)过程中形成 Co-HCF 的机理。实验数据和密度泛函理论都证实,Co-HCF 具有优化的能带结构,能够调整局部电子环境,提高氧进化反应的性能。这项工作不仅阐明了富阶 HCF 的形成机制和配位调节,还为构建具有复杂螺旋凹面结构的纳米晶体提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信