Yang Lv, Xiaodong Wang, Beibei Wang and Wenjie Yuan
{"title":"Experimental assessment of low temperature plasma devices for bacterial aerosol inactivation in the air duct of HVAC systems","authors":"Yang Lv, Xiaodong Wang, Beibei Wang and Wenjie Yuan","doi":"10.1039/D4EM00158C","DOIUrl":null,"url":null,"abstract":"<p >In light of growing concerns about indoor air quality and the transmission of pathogens, this study aims to evaluate the effectiveness of low temperature plasma (LTP) devices in inactivating bacterial aerosols in the air duct of HVAC systems, exploring methods to enhance air purification efficiency. This research employed experimental methods to explore the deactivation effects of LTP on common bacteria such as <em>E. coli</em> and <em>Bacillus subtilis</em>, focusing on the role of air parameters such as the airflow rate, relative humidity, and temperature in influencing the device's performance. Notably, the study determined that an operational voltage of 3000 V for the LTP device, combined with conditions of low airflow, low humidity, and high temperature, significantly enhances the inactivation of bacterial aerosols, achieving an 82% inactivation rate at a negative ion concentration of 2.4 × 10<small><sup>11</sup></small> ions per m<small><sup>3</sup></small> and a wind speed of 3 m s<small><sup>−1</sup></small>. Despite the generation of ozone and ultraviolet light as by-products, their concentrations were found to be within safe limits for human exposure. In addition, this study identified an effective inactivation range, alongside an optimal arrangement for the airflow direction within ducts, to maximize the sterilization efficiency of the LTP device. Given these promising results, the study advocates for the integration of LTP technology into the air duct of HVAC systems of public buildings to improve air quality and reduce the risk of airborne disease transmission.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 10","pages":" 1836-1846"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00158c","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In light of growing concerns about indoor air quality and the transmission of pathogens, this study aims to evaluate the effectiveness of low temperature plasma (LTP) devices in inactivating bacterial aerosols in the air duct of HVAC systems, exploring methods to enhance air purification efficiency. This research employed experimental methods to explore the deactivation effects of LTP on common bacteria such as E. coli and Bacillus subtilis, focusing on the role of air parameters such as the airflow rate, relative humidity, and temperature in influencing the device's performance. Notably, the study determined that an operational voltage of 3000 V for the LTP device, combined with conditions of low airflow, low humidity, and high temperature, significantly enhances the inactivation of bacterial aerosols, achieving an 82% inactivation rate at a negative ion concentration of 2.4 × 1011 ions per m3 and a wind speed of 3 m s−1. Despite the generation of ozone and ultraviolet light as by-products, their concentrations were found to be within safe limits for human exposure. In addition, this study identified an effective inactivation range, alongside an optimal arrangement for the airflow direction within ducts, to maximize the sterilization efficiency of the LTP device. Given these promising results, the study advocates for the integration of LTP technology into the air duct of HVAC systems of public buildings to improve air quality and reduce the risk of airborne disease transmission.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.