Identification of fluoroquinolone-resistant Mycobacterium tuberculosis through high-level data fusion of Raman and laser-induced breakdown spectroscopy†

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Gookseon Jeon, Soogeun Kim, Young Jin Kim, Seungmo Kim, Kyungmin Han, Kyunghwan Oh, Hee Joo Lee and Janghee Choi
{"title":"Identification of fluoroquinolone-resistant Mycobacterium tuberculosis through high-level data fusion of Raman and laser-induced breakdown spectroscopy†","authors":"Gookseon Jeon, Soogeun Kim, Young Jin Kim, Seungmo Kim, Kyungmin Han, Kyunghwan Oh, Hee Joo Lee and Janghee Choi","doi":"10.1039/D4AY01331J","DOIUrl":null,"url":null,"abstract":"<p >Accurate and rapid diagnosis of drug susceptibility of <em>Mycobacterium tuberculosis</em> is crucial for the successful treatment of tuberculosis, a persistent global public health threat. To shorten diagnosis times and enhance accuracy, this study introduces a fusion model combining laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy. This model offers a rapid and accurate method for diagnosing drug-resistance. LIBS and Raman spectroscopy provide complementary information, enabling accurate identification of drug resistance in tuberculosis. Although individual use of LIBS or Raman spectroscopy achieved approximately 90% accuracy in identifying drug resistance, the fusion model significantly improved identification accuracy to 98.3%. Given the fast measurement capabilities of both techniques, this fusion approach is expected to markedly decrease the time required for diagnosis.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ay/d4ay01331j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and rapid diagnosis of drug susceptibility of Mycobacterium tuberculosis is crucial for the successful treatment of tuberculosis, a persistent global public health threat. To shorten diagnosis times and enhance accuracy, this study introduces a fusion model combining laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy. This model offers a rapid and accurate method for diagnosing drug-resistance. LIBS and Raman spectroscopy provide complementary information, enabling accurate identification of drug resistance in tuberculosis. Although individual use of LIBS or Raman spectroscopy achieved approximately 90% accuracy in identifying drug resistance, the fusion model significantly improved identification accuracy to 98.3%. Given the fast measurement capabilities of both techniques, this fusion approach is expected to markedly decrease the time required for diagnosis.

Abstract Image

Abstract Image

通过拉曼光谱和激光诱导击穿光谱的高级数据融合鉴定耐氟喹诺酮结核分枝杆菌。
准确、快速地诊断结核分枝杆菌对药物的敏感性对于成功治疗结核病这一持续威胁全球公共健康的疾病至关重要。为了缩短诊断时间并提高准确性,本研究引入了一种激光诱导击穿光谱(LIBS)与拉曼光谱相结合的融合模型。该模型提供了一种快速、准确的耐药性诊断方法。激光诱导击穿光谱和拉曼光谱可提供互补信息,从而准确识别结核病的耐药性。虽然单独使用 LIBS 或拉曼光谱鉴定耐药性的准确率约为 90%,但融合模型将鉴定准确率大幅提高到 98.3%。鉴于这两种技术的快速测量能力,这种融合方法有望显著缩短诊断所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信