Flexible and wearable electronic systems based on 2D hydrogel composites

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Sushil Kumar Verma, Varee Tyagi, Sonika, Taposhree Dutta and Satyendra Kumar Mishra
{"title":"Flexible and wearable electronic systems based on 2D hydrogel composites","authors":"Sushil Kumar Verma, Varee Tyagi, Sonika, Taposhree Dutta and Satyendra Kumar Mishra","doi":"10.1039/D4AY01124D","DOIUrl":null,"url":null,"abstract":"<p >Flexible electronics is a rapidly developing field of study, which integrates many other fields, including materials science, biology, chemistry, physics, and electrical engineering. Despite their vast potential, the widespread utilization of flexible electronics is hindered by several constraints, including elevated Young's modulus, inadequate biocompatibility, and diminished responsiveness. Therefore, it is necessary to develop innovative materials aimed at overcoming these hurdles and catalysing their practical implementation. In these materials, hydrogels are particularly promising owing to their three-dimensional crosslinked hydrated polymer networks and exceptional properties, positioning them as leading candidates for the development of future flexible electronics.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ay/d4ay01124d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible electronics is a rapidly developing field of study, which integrates many other fields, including materials science, biology, chemistry, physics, and electrical engineering. Despite their vast potential, the widespread utilization of flexible electronics is hindered by several constraints, including elevated Young's modulus, inadequate biocompatibility, and diminished responsiveness. Therefore, it is necessary to develop innovative materials aimed at overcoming these hurdles and catalysing their practical implementation. In these materials, hydrogels are particularly promising owing to their three-dimensional crosslinked hydrated polymer networks and exceptional properties, positioning them as leading candidates for the development of future flexible electronics.

Abstract Image

基于二维水凝胶复合材料的柔性可穿戴电子系统。
柔性电子学是一个快速发展的研究领域,它融合了许多其他领域,包括材料科学、生物学、化学、物理学和电子工程学。尽管柔性电子器件具有巨大的潜力,但其广泛应用却受到一些限制因素的阻碍,包括杨氏模量升高、生物相容性不足以及响应速度降低。因此,有必要开发创新材料,以克服这些障碍并促进其实际应用。在这些材料中,水凝胶因其三维交联的水合聚合物网络和优异的性能而特别具有发展前景,是未来柔性电子器件开发的主要候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信