Joanna Dybowska , Artur Przydacz , Anna Skrzyńska , Łukasz Albrecht
{"title":"PTC in the Polyenolate‐Mediated [10+2]‐Cycloaddition for the Synthesis of α,α‐Disubstituted Amino Acid Precursors","authors":"Joanna Dybowska , Artur Przydacz , Anna Skrzyńska , Łukasz Albrecht","doi":"10.1002/adsc.202400792","DOIUrl":null,"url":null,"abstract":"<div><div>The manuscript describes a formal [10+2] higher‐order cycloaddition between 2‐arylideneindan‐1‐ones and α‐alkylidene azlactones as higherene precursors and higherenofiles respectively. The reaction is realized under Brønsted‐base catalysis utilizing the phase transfer catalysis approach. The key intermediate is an isobenzofulvene‐derived polyenolate which acts as a 10‐electron component in the higher‐order cycloaddition. By using this strategy, a series of structurally diverse compounds containing a polycyclic hydrocarbon scaffold was prepared in 79–99% yields. In addition, the potential of the obtained [10+2]‐cycloadducts has been confirmed by transformations, including the synthesis of a highly‐valuable α,α‐disubstituted <em>N</em>‐protected α‐aminoester.</div></div>","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"367 8","pages":"Article e202400792"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1615415025000032","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The manuscript describes a formal [10+2] higher‐order cycloaddition between 2‐arylideneindan‐1‐ones and α‐alkylidene azlactones as higherene precursors and higherenofiles respectively. The reaction is realized under Brønsted‐base catalysis utilizing the phase transfer catalysis approach. The key intermediate is an isobenzofulvene‐derived polyenolate which acts as a 10‐electron component in the higher‐order cycloaddition. By using this strategy, a series of structurally diverse compounds containing a polycyclic hydrocarbon scaffold was prepared in 79–99% yields. In addition, the potential of the obtained [10+2]‐cycloadducts has been confirmed by transformations, including the synthesis of a highly‐valuable α,α‐disubstituted N‐protected α‐aminoester.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.