{"title":"Ad fontes: divergence-time estimation and the age of angiosperms","authors":"Stephen A. Smith, Jeremy M. Beaulieu","doi":"10.1111/nph.20076","DOIUrl":null,"url":null,"abstract":"<p>Accurate divergence times are essential for interpreting and understanding the context in which lineages have evolved. Over the past several decades, debates have surrounded the discrepancies between the inferred molecular ages of crown angiosperms, often estimated from the Late Jurassic into the Permian, and the fossil record, placing angiosperms in the Early Cretaceous. That crown angiosperms could have emerged as early as the Permian or even the Triassic would have major implications for the paleoecological context of the origin of one of the most consequential clades in the tree of life. Here, we argue, and demonstrate through simulations, that the older ages inferred from molecular data and relaxed-clock models are misled by lineage-specific rate heterogeneity resulting from life history changes that occurred several times throughout the evolution of vascular plants. To overcome persistent discrepancies in age estimates, more biologically informed and realistic models should be developed, and our results should be considered in the context of their biological implications before we accept inferences that are a major departure from our strongest evidence.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.20076","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate divergence times are essential for interpreting and understanding the context in which lineages have evolved. Over the past several decades, debates have surrounded the discrepancies between the inferred molecular ages of crown angiosperms, often estimated from the Late Jurassic into the Permian, and the fossil record, placing angiosperms in the Early Cretaceous. That crown angiosperms could have emerged as early as the Permian or even the Triassic would have major implications for the paleoecological context of the origin of one of the most consequential clades in the tree of life. Here, we argue, and demonstrate through simulations, that the older ages inferred from molecular data and relaxed-clock models are misled by lineage-specific rate heterogeneity resulting from life history changes that occurred several times throughout the evolution of vascular plants. To overcome persistent discrepancies in age estimates, more biologically informed and realistic models should be developed, and our results should be considered in the context of their biological implications before we accept inferences that are a major departure from our strongest evidence.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.