Si Suo, Doireann O’Kiely, Mingchao Liu, Yixiang Gan
{"title":"Geometry Effects on Interfacial Dynamics of Gas-Driven Drainage in a Gradient Capillary","authors":"Si Suo, Doireann O’Kiely, Mingchao Liu, Yixiang Gan","doi":"10.1029/2023wr036766","DOIUrl":null,"url":null,"abstract":"Unfavorable fluid-fluid displacement, where a low-viscosity fluid displaces a higher-viscosity fluid in permeable media, is commonly encountered in various subsurface processes. Understanding the formation and evolution of the resulting interfacial instability can have practical benefits for engineering applications. Using gradient capillary tubes as surrogate models of permeable media, we numerically investigate interfacial dynamics during gas-driven drainage. Our focus is on understanding the impact of tube geometry on interface stability. In a gradient tube, since the interface shape changes during the drainage process, we measure interfacial stability using the difference between the contact-line velocity <i>U</i><sub>cl</sub> and the meniscus tip velocity <i>U</i><sub>tip</sub>. We define instability as a rapid reduction in the contact line velocity <i>U</i><sub>cl</sub> compared to the tip velocity <i>U</i><sub>tip</sub>. Beyond the onset of this instability, gas penetrates into the liquid, forming a finger, and entraining a liquid film on the tube wall. The observed stability transition can be rationalized to a large extent by adaptation of an existing theory for cylindrical tubes in terms of a critical capillary number Ca<sub>crit</sub>. For an expanding tube, simulations suggest that a stability transition from an initially unstable meniscus to a final stable one, with <i>U</i><sub>cl</sub> catching up with <i>U</i><sub>tip</sub>, can occur if the local capillary number is initially slightly larger than Ca<sub>crit</sub> and then drops below Ca<sub>crit</sub>. The insights gained from this study can be beneficial in estimating the mode and efficiency of subsurface fluid displacement.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036766","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Unfavorable fluid-fluid displacement, where a low-viscosity fluid displaces a higher-viscosity fluid in permeable media, is commonly encountered in various subsurface processes. Understanding the formation and evolution of the resulting interfacial instability can have practical benefits for engineering applications. Using gradient capillary tubes as surrogate models of permeable media, we numerically investigate interfacial dynamics during gas-driven drainage. Our focus is on understanding the impact of tube geometry on interface stability. In a gradient tube, since the interface shape changes during the drainage process, we measure interfacial stability using the difference between the contact-line velocity Ucl and the meniscus tip velocity Utip. We define instability as a rapid reduction in the contact line velocity Ucl compared to the tip velocity Utip. Beyond the onset of this instability, gas penetrates into the liquid, forming a finger, and entraining a liquid film on the tube wall. The observed stability transition can be rationalized to a large extent by adaptation of an existing theory for cylindrical tubes in terms of a critical capillary number Cacrit. For an expanding tube, simulations suggest that a stability transition from an initially unstable meniscus to a final stable one, with Ucl catching up with Utip, can occur if the local capillary number is initially slightly larger than Cacrit and then drops below Cacrit. The insights gained from this study can be beneficial in estimating the mode and efficiency of subsurface fluid displacement.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.