Stoichiometric and non-stoichiometric Mn modification on high-power properties in PYN-PZT piezoelectric ceramics

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xin Liu, Yulong Zhang, Mingyang Tang, Xiaodan Ren, Liqing Hu, Yike Wang, Zhuo Xu, Liwei D. Geng, Yongke Yan
{"title":"Stoichiometric and non-stoichiometric Mn modification on high-power properties in PYN-PZT piezoelectric ceramics","authors":"Xin Liu, Yulong Zhang, Mingyang Tang, Xiaodan Ren, Liqing Hu, Yike Wang, Zhuo Xu, Liwei D. Geng, Yongke Yan","doi":"10.1016/j.jmst.2024.07.049","DOIUrl":null,"url":null,"abstract":"<p>The types of dopants lead to distinctive microstructural evolution behavior and physical properties in materials. In this study, the effect of stoichiometric and non-stoichiometric Mn modification, namely Pb(Mn<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> (PMnN) and MnO<sub>2</sub>, on the microstructure and properties of Pb(Yb<sub>1/2</sub>Nb<sub>1/2</sub>)O<sub>3</sub>-PbZrO<sub>3</sub>-PbTiO<sub>3</sub> (PYN-PZT) piezoelectric ceramics are systematically investigated. It was found that stoichiometric PMnN modification inhibits the grain growth while non-stoichiometric MnO<sub>2</sub> modification promotes it, and thus the former yields stronger high-power characteristics (higher internal bias field <em>E</em><sub>i</sub> and larger mechanical quality factor <em>Q</em><sub>m</sub>) than the latter. Specifically, with an equivalent amount of Mn modification (2 mol%), PMnN and MnO<sub>2</sub> modification PYN-PZT ceramics exhibit significantly different values for average grain size (1.21 μm <em>vs.</em> 14.12 μm), <em>E</em><sub>i</sub> (8.5 kV/cm <em>vs.</em> 5 kV/cm), and <em>Q</em><sub>m</sub> (2376 <em>vs.</em>1134). To further evaluate high-power performance, the vibration velocity <em>v</em> of these two modified PYN-PZT under high driving conditions was measured. Under an AC electric field of 3.5 V/mm, the PYN-PZT+6PMnN ceramics exhibit a <em>v</em> of up to 0.95 m/s, larger than both MnO<sub>2</sub>-doped PYN-PZT (0.72 m/s) and unmodified PYN-PZT ceramics (0.1 m/s), and far outperformance than both PZT-4 and PZT-8 ceramics. Furthermore, to elucidate the origin of the exceptional high-power performance of PMnN-modified PYN-PZT, we performed phase-field simulations revealing a pinning effect of the grain boundary on domain wall motion. Consequently, the small grain size (high grain boundary density) in PMnN-modified PYN-PZT exhibits a strong pinning effect, resulting in a large <em>Q</em><sub>m</sub> and outstanding high-power performance.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.07.049","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The types of dopants lead to distinctive microstructural evolution behavior and physical properties in materials. In this study, the effect of stoichiometric and non-stoichiometric Mn modification, namely Pb(Mn1/3Nb2/3)O3 (PMnN) and MnO2, on the microstructure and properties of Pb(Yb1/2Nb1/2)O3-PbZrO3-PbTiO3 (PYN-PZT) piezoelectric ceramics are systematically investigated. It was found that stoichiometric PMnN modification inhibits the grain growth while non-stoichiometric MnO2 modification promotes it, and thus the former yields stronger high-power characteristics (higher internal bias field Ei and larger mechanical quality factor Qm) than the latter. Specifically, with an equivalent amount of Mn modification (2 mol%), PMnN and MnO2 modification PYN-PZT ceramics exhibit significantly different values for average grain size (1.21 μm vs. 14.12 μm), Ei (8.5 kV/cm vs. 5 kV/cm), and Qm (2376 vs.1134). To further evaluate high-power performance, the vibration velocity v of these two modified PYN-PZT under high driving conditions was measured. Under an AC electric field of 3.5 V/mm, the PYN-PZT+6PMnN ceramics exhibit a v of up to 0.95 m/s, larger than both MnO2-doped PYN-PZT (0.72 m/s) and unmodified PYN-PZT ceramics (0.1 m/s), and far outperformance than both PZT-4 and PZT-8 ceramics. Furthermore, to elucidate the origin of the exceptional high-power performance of PMnN-modified PYN-PZT, we performed phase-field simulations revealing a pinning effect of the grain boundary on domain wall motion. Consequently, the small grain size (high grain boundary density) in PMnN-modified PYN-PZT exhibits a strong pinning effect, resulting in a large Qm and outstanding high-power performance.

Abstract Image

化学计量和非化学计量锰改性对PYN-PZT 压电陶瓷高功率特性的影响
掺杂剂的类型会导致材料具有不同的微观结构演变行为和物理性质。本研究系统研究了化学计量和非化学计量锰改性(即 Pb(Mn1/3Nb2/3)O3 (PMnN) 和 MnO2)对 Pb(Yb1/2Nb1/2)O3-PbZrO3-PbTiO3 (PYN-PZT) 压电陶瓷微观结构和性能的影响。研究发现,化学计量的 PMnN 改性会抑制晶粒生长,而非化学计量的 MnO2 改性则会促进晶粒生长,因此前者会比后者产生更强的高功率特性(更高的内部偏置场 Ei 和更大的机械品质因数 Qm)。具体来说,在锰改性量(2 mol%)相同的情况下,PMnN 和 MnO2 改性PYN-PZT 陶瓷的平均晶粒尺寸(1.21 μm 对 14.12 μm)、Ei(8.5 kV/cm 对 5 kV/cm)和 Qm(2376 对 1134)的值有显著差异。为了进一步评估高功率性能,我们测量了这两种改进型PYN-PZT 在高驱动条件下的振动速度 v。在 3.5 V/mm 的交流电场下,PYN-PZT+6PMnN 陶瓷的振动速度高达 0.95 m/s,比掺杂 MnO2 的PYN-PZT(0.72 m/s)和未改性的PYN-PZT 陶瓷(0.1 m/s)都要大,性能远远超过 PZT-4 和 PZT-8 陶瓷。此外,为了阐明 PMnN 改性PYN-PZT 具有优异高功率性能的原因,我们进行了相场模拟,发现晶界对畴壁运动具有针刺效应。因此,PMnN 改性PYN-PZT 中的小晶粒尺寸(高晶界密度)表现出强烈的针刺效应,从而产生了大 Qm 值和出色的高功率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信