Matyáš Staněk, Ondřej Hort, Lucie Jurkovičová, Martin Albrecht, Ondřej Finke, Balázs Nagyillés, Balázs Farkas, Tamás Csizmadia, Tímea Grósz, Andor Körmöczi, Zsolt Divéki, Jaroslav Nejdl
{"title":"Photoelectric charge from metallic filters: An online XUV pulse energy diagnostics","authors":"Matyáš Staněk, Ondřej Hort, Lucie Jurkovičová, Martin Albrecht, Ondřej Finke, Balázs Nagyillés, Balázs Farkas, Tamás Csizmadia, Tímea Grósz, Andor Körmöczi, Zsolt Divéki, Jaroslav Nejdl","doi":"10.1063/5.0213554","DOIUrl":null,"url":null,"abstract":"Extreme ultraviolet (XUV) radiation is a tool of choice for studying ultrafast processes and atomic physics. Most experiments employing sources of XUV radiation, such as high harmonic generation (HHG) or x-ray lasers, benefit from knowing the number of photons delivered to target in every single shot, because of the possible shot-to-shot pulse fluctuation of the sources. Nonetheless, many setups lack noninvasive XUV pulse energy diagnostics, hindering the simultaneous measurement of pulse energy and utilization of the XUV beam for applications. We present an online XUV pulse energy monitoring method based on the detection of photoelectric charge from thin metallic foil filters transmitting the XUV beam, which can be easily implemented at every pulsed XUV source that includes a high-pass filter system in the form of metallic filters. Consequently, implementation of our method is as straightforward as connecting the filter to an oscilloscope. In the paper, we describe all the physics aspects of such measurement and show the dependence of measured photoelectric charge on the incident pulse energy. To prove the versatility of our approach, we performed this measurement on two different high-flux HHG beamlines, taking consecutive shots at 1 kHz.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0213554","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Extreme ultraviolet (XUV) radiation is a tool of choice for studying ultrafast processes and atomic physics. Most experiments employing sources of XUV radiation, such as high harmonic generation (HHG) or x-ray lasers, benefit from knowing the number of photons delivered to target in every single shot, because of the possible shot-to-shot pulse fluctuation of the sources. Nonetheless, many setups lack noninvasive XUV pulse energy diagnostics, hindering the simultaneous measurement of pulse energy and utilization of the XUV beam for applications. We present an online XUV pulse energy monitoring method based on the detection of photoelectric charge from thin metallic foil filters transmitting the XUV beam, which can be easily implemented at every pulsed XUV source that includes a high-pass filter system in the form of metallic filters. Consequently, implementation of our method is as straightforward as connecting the filter to an oscilloscope. In the paper, we describe all the physics aspects of such measurement and show the dependence of measured photoelectric charge on the incident pulse energy. To prove the versatility of our approach, we performed this measurement on two different high-flux HHG beamlines, taking consecutive shots at 1 kHz.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.