David Vishny, Matthias Morzfeld, Kyle Gwirtz, Eviatar Bach, Oliver R. A. Dunbar, Daniel Hodyss
{"title":"High-Dimensional Covariance Estimation From a Small Number of Samples","authors":"David Vishny, Matthias Morzfeld, Kyle Gwirtz, Eviatar Bach, Oliver R. A. Dunbar, Daniel Hodyss","doi":"10.1029/2024MS004417","DOIUrl":null,"url":null,"abstract":"<p>We synthesize knowledge from numerical weather prediction, inverse theory, and statistics to address the problem of estimating a high-dimensional covariance matrix from a small number of samples. This problem is fundamental in statistics, machine learning/artificial intelligence, and in modern Earth science. We create several new adaptive methods for high-dimensional covariance estimation, but one method, which we call Noise-Informed Covariance Estimation (NICE), stands out because it has three important properties: (a) NICE is conceptually simple and computationally efficient; (b) NICE guarantees symmetric positive semi-definite covariance estimates; and (c) NICE is largely tuning-free. We illustrate the use of NICE on a large set of Earth science–inspired numerical examples, including cycling data assimilation, inversion of geophysical field data, and training of feed-forward neural networks with time-averaged data from a chaotic dynamical system. Our theory, heuristics and numerical tests suggest that NICE may indeed be a viable option for high-dimensional covariance estimation in many Earth science problems.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004417","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004417","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We synthesize knowledge from numerical weather prediction, inverse theory, and statistics to address the problem of estimating a high-dimensional covariance matrix from a small number of samples. This problem is fundamental in statistics, machine learning/artificial intelligence, and in modern Earth science. We create several new adaptive methods for high-dimensional covariance estimation, but one method, which we call Noise-Informed Covariance Estimation (NICE), stands out because it has three important properties: (a) NICE is conceptually simple and computationally efficient; (b) NICE guarantees symmetric positive semi-definite covariance estimates; and (c) NICE is largely tuning-free. We illustrate the use of NICE on a large set of Earth science–inspired numerical examples, including cycling data assimilation, inversion of geophysical field data, and training of feed-forward neural networks with time-averaged data from a chaotic dynamical system. Our theory, heuristics and numerical tests suggest that NICE may indeed be a viable option for high-dimensional covariance estimation in many Earth science problems.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.