Microcapsule preparation process research and current status of oilfield application

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sicai Wang, Qun Zhang, Jianlong Xiu, Yuandong Ma, Lixin Huang, Lina Yi, Haowei Fu
{"title":"Microcapsule preparation process research and current status of oilfield application","authors":"Sicai Wang,&nbsp;Qun Zhang,&nbsp;Jianlong Xiu,&nbsp;Yuandong Ma,&nbsp;Lixin Huang,&nbsp;Lina Yi,&nbsp;Haowei Fu","doi":"10.1049/mna2.70000","DOIUrl":null,"url":null,"abstract":"<p>Traditional tertiary oil recovery methods are fraught with challenges such as significant reagent adsorption, voluminous injection requirements, limited sweep efficiency, and inadequate intelligent targeting. These issues lead to suboptimal displacement of residual oil, resulting in the inability to mobilize substantial crude oil resources and thus yielding low recovery rates. Microcapsules—spherical particles with micron or nanometer scale diameters—have been extensively utilized across various sectors, including food storage, targeted drug encapsulation, and fragrance containment, owing to their distinct advantages in controlled release, isolation, and targeted delivery. These applications have successfully achieved industrialization and commercialization. In recent years, numerous researchers have explored the application of microcapsule preparation processes to diverse facets of oil extraction, with the aim of further enhancing oil recovery (EOR). This article elucidates the mechanism of action of microcapsules, their preparation methods (encompassing in situ polymerization, interfacial polymerization, spray drying, solvent evaporation, phase separation, and supercritical CO<sub>2</sub>-assisted techniques), characterization and evaluation methodologies, among other aspects. It encapsulates the current status and principal challenges associated with the application of microcapsule preparation processes in oilfield development and probes the potential and pivotal research directions for their oilfield applications.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mna2.70000","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional tertiary oil recovery methods are fraught with challenges such as significant reagent adsorption, voluminous injection requirements, limited sweep efficiency, and inadequate intelligent targeting. These issues lead to suboptimal displacement of residual oil, resulting in the inability to mobilize substantial crude oil resources and thus yielding low recovery rates. Microcapsules—spherical particles with micron or nanometer scale diameters—have been extensively utilized across various sectors, including food storage, targeted drug encapsulation, and fragrance containment, owing to their distinct advantages in controlled release, isolation, and targeted delivery. These applications have successfully achieved industrialization and commercialization. In recent years, numerous researchers have explored the application of microcapsule preparation processes to diverse facets of oil extraction, with the aim of further enhancing oil recovery (EOR). This article elucidates the mechanism of action of microcapsules, their preparation methods (encompassing in situ polymerization, interfacial polymerization, spray drying, solvent evaporation, phase separation, and supercritical CO2-assisted techniques), characterization and evaluation methodologies, among other aspects. It encapsulates the current status and principal challenges associated with the application of microcapsule preparation processes in oilfield development and probes the potential and pivotal research directions for their oilfield applications.

Abstract Image

微胶囊制备工艺研究及油田应用现状
传统的三次采油方法充满了挑战,例如大量的试剂吸附、大量的注入要求、有限的清扫效率以及不充分的智能定位。这些问题导致残余油的置换效果不理想,无法调动大量原油资源,因此采收率较低。微胶囊--直径为微米或纳米级的球形颗粒--因其在控释、隔离和定向输送方面的独特优势,已被广泛应用于食品储存、靶向药物封装和香料密封等多个领域。这些应用已成功实现了工业化和商业化。近年来,许多研究人员探索将微胶囊制备工艺应用于石油开采的各个环节,以期进一步提高石油采收率(EOR)。本文阐明了微胶囊的作用机理、制备方法(包括原位聚合、界面聚合、喷雾干燥、溶剂蒸发、相分离和超临界二氧化碳辅助技术)、表征和评估方法等。该书概括了微胶囊制备工艺在油田开发中的应用现状和主要挑战,并探讨了其在油田应用中的潜力和关键研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro & Nano Letters
Micro & Nano Letters 工程技术-材料科学:综合
CiteScore
3.30
自引率
0.00%
发文量
58
审稿时长
2.8 months
期刊介绍: Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities. Scope Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities. Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications. Typical topics include: Micro and nanostructures for the device communities MEMS and NEMS Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data Synthesis and processing Micro and nano-photonics Molecular machines, circuits and self-assembly Organic and inorganic micro and nanostructures Micro and nano-fluidics
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信