{"title":"Evaluating the Feasibility of Short Dental Implants as Alternatives to Long Dental Implants in Mandibular Bone: A Finite Element Study","authors":"Prathamesh Deshmukh, Pankaj Dhatrak","doi":"10.1002/jbm.b.35481","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study uses finite element analysis to investigate the potential application of shorter dental implants as a substitute for longer implants in the lower jaw (mandible). FEA allows the evaluation of the stress patterns around the implant-bone interface, a critical factor for successful osseointegration. Ten models were generated, encompassing five long (L1-L5) and five short implant models (S1-S5) with variations in diameter and length. Hypermesh software was utilized to meticulously prepare the FEA models, ensuring accurate mesh generation. The FEA simulations were conducted under four distinct loading scenarios (100 N occlusal load, 40 N lateral load, 100 N oblique at 30°, and 100 N oblique at 45°) to realistically mimic the forces exerted during biting, using an ABAQUS CAE solver. The results revealed that the von Mises stress generated within the short implant models was demonstrably lower compared to their long implants. Additionally, a significant drop in stress was observed with increasing the diameter of the short implants, to a certain diameter range. These findings suggest the potential for successful substitution of long implant model L4 with short implant model S4 due to the demonstrably lower stress values achieved. Furthermore, the data indicates the possibility of utilizing short implant models S3 and S5 as alternatives to long implant models L3 and L5, respectively. These observations hold significant promise for evaluating the feasibility of replacing long implants with shorter variants, potentially leading to a reduction in implant-related failures.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35481","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study uses finite element analysis to investigate the potential application of shorter dental implants as a substitute for longer implants in the lower jaw (mandible). FEA allows the evaluation of the stress patterns around the implant-bone interface, a critical factor for successful osseointegration. Ten models were generated, encompassing five long (L1-L5) and five short implant models (S1-S5) with variations in diameter and length. Hypermesh software was utilized to meticulously prepare the FEA models, ensuring accurate mesh generation. The FEA simulations were conducted under four distinct loading scenarios (100 N occlusal load, 40 N lateral load, 100 N oblique at 30°, and 100 N oblique at 45°) to realistically mimic the forces exerted during biting, using an ABAQUS CAE solver. The results revealed that the von Mises stress generated within the short implant models was demonstrably lower compared to their long implants. Additionally, a significant drop in stress was observed with increasing the diameter of the short implants, to a certain diameter range. These findings suggest the potential for successful substitution of long implant model L4 with short implant model S4 due to the demonstrably lower stress values achieved. Furthermore, the data indicates the possibility of utilizing short implant models S3 and S5 as alternatives to long implant models L3 and L5, respectively. These observations hold significant promise for evaluating the feasibility of replacing long implants with shorter variants, potentially leading to a reduction in implant-related failures.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.