Raphael Trischler, Stefanie M. Rustler, Anja Poehlein, Rolf Daniel, Milena Breitenbach, Eric J. N. Helfrich, Volker Müller
{"title":"3-Hydroxypropionate production from myo-inositol by the gut acetogen Blautia schinkii","authors":"Raphael Trischler, Stefanie M. Rustler, Anja Poehlein, Rolf Daniel, Milena Breitenbach, Eric J. N. Helfrich, Volker Müller","doi":"10.1111/1462-2920.16692","DOIUrl":null,"url":null,"abstract":"<p>Species of the genus <i>Blautia</i> are not only abundant in the human gut but also contribute to human well-being. Our study demonstrates that the gut acetogen <i>Blautia schinkii</i> can grow on <i>myo</i>-inositol. We identified the pathway of <i>myo</i>-inositol degradation through a combination of physiological and biochemical studies, genome-wide expression profiling and homology searches. Initially, <i>myo</i>-inositol is oxidized to 2-keto-<i>myo</i>-inositol. This compound is then metabolized by a series of enzymes – a dehydratase, hydrolase, isomerase and kinase – to form 2-deoxy-5-keto-<span>d</span>-gluconic acid 6-phosphate. This intermediate is split by an aldolase into malonate semialdehyde and dihydroxyacetone phosphate, which is an intermediate of the Embden–Meyerhof–Parnas pathway. This pathway leads to the production of pyruvate and, subsequently, acetate. Concurrently, malonate semialdehyde is reduced to 3-hydroxypropionate (3-HP). The genes responsible for <i>myo</i>-inositol degradation are clustered on the genome, except for the gene encoding the aldolase. We identified the putative aldolase Fba_3 and 3-HP dehydrogenase Adh1 encoding genes bioinformatically and verified them biochemically using enzyme assays with heterologously produced and purified protein. The major fermentation end products were 3-HP and acetate, produced in similar amounts. The production of the unusual fermentation end product 3-HP is significant not only for human health but also for the potential bioindustrial production of this highly desired compound.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16692","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16692","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Species of the genus Blautia are not only abundant in the human gut but also contribute to human well-being. Our study demonstrates that the gut acetogen Blautia schinkii can grow on myo-inositol. We identified the pathway of myo-inositol degradation through a combination of physiological and biochemical studies, genome-wide expression profiling and homology searches. Initially, myo-inositol is oxidized to 2-keto-myo-inositol. This compound is then metabolized by a series of enzymes – a dehydratase, hydrolase, isomerase and kinase – to form 2-deoxy-5-keto-d-gluconic acid 6-phosphate. This intermediate is split by an aldolase into malonate semialdehyde and dihydroxyacetone phosphate, which is an intermediate of the Embden–Meyerhof–Parnas pathway. This pathway leads to the production of pyruvate and, subsequently, acetate. Concurrently, malonate semialdehyde is reduced to 3-hydroxypropionate (3-HP). The genes responsible for myo-inositol degradation are clustered on the genome, except for the gene encoding the aldolase. We identified the putative aldolase Fba_3 and 3-HP dehydrogenase Adh1 encoding genes bioinformatically and verified them biochemically using enzyme assays with heterologously produced and purified protein. The major fermentation end products were 3-HP and acetate, produced in similar amounts. The production of the unusual fermentation end product 3-HP is significant not only for human health but also for the potential bioindustrial production of this highly desired compound.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens