Machine learning based prospect targeting: A case of gold occurrence in central parts of Tanzania, East Africa

Sidique Gawusu , Benatus Norbert Mvile , Mahamuda Abu , John Desderius Kalimenze
{"title":"Machine learning based prospect targeting: A case of gold occurrence in central parts of Tanzania, East Africa","authors":"Sidique Gawusu ,&nbsp;Benatus Norbert Mvile ,&nbsp;Mahamuda Abu ,&nbsp;John Desderius Kalimenze","doi":"10.1016/j.oreoa.2024.100065","DOIUrl":null,"url":null,"abstract":"<div><p>Soil geochemical analyses from central Tanzania reveal significant gold (Au) values, highlighting the potential for further exploration in the region. This study employs ensemble machine learning models—XGBoost-RF, XGBoost-SVM, and XGBoost-ANN—to enhance predictions of Au distribution. Among these, the XGBoost-ANN model showed the highest accuracy during the training phase, achieving a Mean Absolute Percentage Error (MAPE) of 1.275, a Root Mean Square Error (RMSE) of 0.031, an R² of 0.999, and a Pearson Correlation Coefficient (PCC) of 0.999. However, its performance declined in the testing phase with a MAPE of 0.0668 and an RMSE of 0.2491, indicating reduced predictiveness on new data. Spatial analyses using Global and Local Moran's I tests revealed no significant global spatial autocorrelation but identified localized clusters of high and low Au concentrations. Specific areas showed significant spatial dependence, enhancing our understanding of the complex geospatial distribution of Au. These findings support the combined use of predictive modeling and spatial statistical methods to refine mineral exploration strategies, highlighting the value of advanced analytics in identifying promising exploration targets.</p></div>","PeriodicalId":100993,"journal":{"name":"Ore and Energy Resource Geology","volume":"17 ","pages":"Article 100065"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore and Energy Resource Geology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666261224000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soil geochemical analyses from central Tanzania reveal significant gold (Au) values, highlighting the potential for further exploration in the region. This study employs ensemble machine learning models—XGBoost-RF, XGBoost-SVM, and XGBoost-ANN—to enhance predictions of Au distribution. Among these, the XGBoost-ANN model showed the highest accuracy during the training phase, achieving a Mean Absolute Percentage Error (MAPE) of 1.275, a Root Mean Square Error (RMSE) of 0.031, an R² of 0.999, and a Pearson Correlation Coefficient (PCC) of 0.999. However, its performance declined in the testing phase with a MAPE of 0.0668 and an RMSE of 0.2491, indicating reduced predictiveness on new data. Spatial analyses using Global and Local Moran's I tests revealed no significant global spatial autocorrelation but identified localized clusters of high and low Au concentrations. Specific areas showed significant spatial dependence, enhancing our understanding of the complex geospatial distribution of Au. These findings support the combined use of predictive modeling and spatial statistical methods to refine mineral exploration strategies, highlighting the value of advanced analytics in identifying promising exploration targets.

基于机器学习的勘探定位:东非坦桑尼亚中部金矿发现案例
坦桑尼亚中部的土壤地球化学分析揭示了重要的金(Au)价值,凸显了该地区进一步勘探的潜力。本研究采用了集合机器学习模型--XGBoost-RF、XGBoost-SVM 和 XGBoost-ANN 来增强对金分布的预测。其中,XGBoost-ANN 模型在训练阶段表现出最高的准确性,平均绝对百分比误差 (MAPE) 为 1.275,均方根误差 (RMSE) 为 0.031,R² 为 0.999,皮尔逊相关系数 (PCC) 为 0.999。但在测试阶段,其性能有所下降,MAPE 为 0.0668,RMSE 为 0.2491,表明对新数据的预测能力有所下降。使用全局和局部莫兰 I 检验进行的空间分析表明,全局空间自相关性不明显,但发现了局部高浓度和低浓度金矿群。特定区域显示出明显的空间依赖性,加深了我们对金的复杂地理空间分布的理解。这些发现支持结合使用预测建模和空间统计方法来完善矿产勘探战略,凸显了先进分析技术在确定有前景的勘探目标方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信