Alexandre Hastenreiter Assumpção , Felipe Bastos de Freitas Rachid , Maria Laura Martins-Costa , Rogério Martins Saldanha da Gama
{"title":"Equations of state and hysteresis loops in isothermal cavitation","authors":"Alexandre Hastenreiter Assumpção , Felipe Bastos de Freitas Rachid , Maria Laura Martins-Costa , Rogério Martins Saldanha da Gama","doi":"10.1016/j.apples.2024.100195","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the influence of the use of the cubic equation of state (EOS) in the isothermal cavitation of compressible fluids. To do so, a thermodynamic consistent cavitation model that was recently proposed has been used. This model is derived under the Thermodynamics of Irreversible Processes and considers the irreversible dissipative character of the phase change transformation. Numerical simulations carried out using linear and cubic EOS are presented and compared. Neglecting surface tension effects, the results obtained demonstrate that there is no significant difference between the responses of these two types of EOS for water up to saturation pressures up to about 200 kPa. Hysteresis loops observed in the simulations with both types of EOS are virtually the same. It suggests that linear EOSs can provide good approximations for metastable behaviors (intrinsically present in cubic EOS) as well as for the Gibbs free energy difference (the thermodynamic force associated with irreversible phase change transformation), rendering a great simplification in the analysis.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100195"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000219/pdfft?md5=e5daf3c8c37531805cf3d906562cdb3b&pid=1-s2.0-S2666496824000219-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496824000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the influence of the use of the cubic equation of state (EOS) in the isothermal cavitation of compressible fluids. To do so, a thermodynamic consistent cavitation model that was recently proposed has been used. This model is derived under the Thermodynamics of Irreversible Processes and considers the irreversible dissipative character of the phase change transformation. Numerical simulations carried out using linear and cubic EOS are presented and compared. Neglecting surface tension effects, the results obtained demonstrate that there is no significant difference between the responses of these two types of EOS for water up to saturation pressures up to about 200 kPa. Hysteresis loops observed in the simulations with both types of EOS are virtually the same. It suggests that linear EOSs can provide good approximations for metastable behaviors (intrinsically present in cubic EOS) as well as for the Gibbs free energy difference (the thermodynamic force associated with irreversible phase change transformation), rendering a great simplification in the analysis.
本文研究了在可压缩流体的等温空化中使用立方状态方程(EOS)的影响。为此,采用了最近提出的热力学一致空化模型。该模型是根据不可逆过程热力学推导出来的,考虑了相变转化的不可逆耗散特性。文中介绍并比较了使用线性和立方 EOS 进行的数值模拟。在不考虑表面张力效应的情况下,所得结果表明这两种 EOS 对饱和压力高达约 200 kPa 的水的响应没有显著差异。在两种 EOS 的模拟中观察到的滞后环几乎相同。这表明,线性 EOS 可以很好地近似于可迁移行为(立方 EOS 中固有的)以及吉布斯自由能差(与不可逆相变转化相关的热动力),从而大大简化了分析。