H(div)-conforming and discontinuous Galerkin approach for Herschel–Bulkley flow with density-dependent viscosity and yield stress

IF 2.2 Q2 ENGINEERING, MULTIDISCIPLINARY
Sergio González-Andrade , Paul E. Méndez Silva
{"title":"H(div)-conforming and discontinuous Galerkin approach for Herschel–Bulkley flow with density-dependent viscosity and yield stress","authors":"Sergio González-Andrade ,&nbsp;Paul E. Méndez Silva","doi":"10.1016/j.apples.2024.100193","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a comprehensive study on Herschel–Bulkley flow, where the flow parameters are dependent on the density. The Herschel–Bulkley model is a generalized power-law model used to simulate viscoplastic fluids defined by a plasticity threshold. We consider the case where the plasticity threshold and the viscosity depend on the shear rate and fluid density. To analyze this model, we use a Huber regularization of the stress and propose an H(div)-conforming and discontinuous Galerkin (DG) numerical approximation for the coupled equations governing the flow. We discuss the stability and existence of discrete solutions and propose a semismooth Newton linearization for the numerical solution of the discretized system. Our numerical scheme is validated through several experiments that explore the behavior of Herschel–Bulkley flow under different conditions. The results demonstrate the robustness of our numerical method.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100193"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496824000190/pdfft?md5=9c9483593e5fb0dcb26150f6a60f8392&pid=1-s2.0-S2666496824000190-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496824000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive study on Herschel–Bulkley flow, where the flow parameters are dependent on the density. The Herschel–Bulkley model is a generalized power-law model used to simulate viscoplastic fluids defined by a plasticity threshold. We consider the case where the plasticity threshold and the viscosity depend on the shear rate and fluid density. To analyze this model, we use a Huber regularization of the stress and propose an H(div)-conforming and discontinuous Galerkin (DG) numerical approximation for the coupled equations governing the flow. We discuss the stability and existence of discrete solutions and propose a semismooth Newton linearization for the numerical solution of the discretized system. Our numerical scheme is validated through several experiments that explore the behavior of Herschel–Bulkley flow under different conditions. The results demonstrate the robustness of our numerical method.

H(div)-conforming and discontinuous Galerkin approach for Herschel-Bulkley flow with density-dependent viscosity and yield stress(具有密度粘度和屈服应力的 Herschel-Bulkley 流动的 H(div)-conforming 和不连续伽勒金方法
本文对 Herschel-Bulkley 流动进行了全面研究,其中流动参数取决于密度。Herschel-Bulkley 模型是一种广义幂律模型,用于模拟由塑性阈值定义的粘性流体。我们考虑的是塑性阈值和粘度取决于剪切速率和流体密度的情况。为了分析该模型,我们使用了应力的 Huber 正则化,并为控制流动的耦合方程提出了 H(div)-conforming 和非连续 Galerkin (DG) 数值近似。我们讨论了离散解的稳定性和存在性,并为离散系统的数值求解提出了一种半滑牛顿线性化方法。我们的数值方案通过几个实验进行了验证,这些实验探索了不同条件下赫歇尔-布尔克利流的行为。结果证明了我们的数值方法的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applications in engineering science
Applications in engineering science Mechanical Engineering
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
68 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信